Node.js Fibers and code scheduled with setTimeout leads to crash - node.js

I am using Fibers to solve a problem regarding how to yield control to the event loop in node.js, pausing the execution of some synchronous code. This works well, mostly, but I encountered a strange crashing but, and I am not able to find the reason for it.
Setup
There are three process:
A main server process, it receives code to instrument and execute. When it receives new code to execute it use child_process.fork() to spawn
An execution process. This instruments the received code to call a specific callback from time to time to report what happened in the executed code. It then executes the code in a sandbox created by using Contextify. Sometimes these reports include incorrect location information about the line and column in the code something happens. In that case a source map is needed to map locations in the instrumented code to locations in the original code. But calculating this source map takes a significant amount of time. Therefore, before starting the execution the execution process spawns
A source map calculation process. This just takes the original code and the instrumented code and calculates a source map. When it's done it sends the finished source map to the execution process and exits.
If the execution process needs the source map in a callback before the execution is finished, it will use Fiber.yield() to yield control to the event loop and thus pause the execution. When the execution process then receives the data it continues the execution using pausedFiber.run().
This is implemented like so:
// server.js / main process
function executeCode(codeToExecute) {
var runtime = fork("./runtime");
runtime.on("uncaught exception", function (exception) {
console.log("An uncaught exception occured in process with id " + id + ": ", exception);
console.log(exception.stack);
});
runtime.on("exit", function (code, signal) {
console.log("Child process exited with code: " + code + " after receiving signal: " + signal);
});
runtime.send({ type: "code", code: code});
}
and
// runtime.js / execution process
var pausedExecution, sourceMap, messagesToSend = [];
function getSourceMap() {
if (sourceMap === undefined) {
console.log("Waiting for source map.");
pausedExecution = Fiber.current;
Fiber.yield();
pausedExecution = undefined;
console.log("Wait is over.")
}
if (sourceMap === null) {
throw new Error("Source map could not be generated.");
} else {
// we should have a proper source map now
return sourceMap;
}
}
function callback(message) {
console.log("Message:", message.type;)
if (message.type === "console log") {
// the location of the console log message will be the location in the instrumented code
/// we have to adjust it to get the position in the original code
message.loc = getSourceMap().originalPositionFor(message.loc);
}
messagesToSend.push(message); // gather messages in a buffer
// do not forward messages every time, instead gather a bunch and send them all at once
if (messagesToSend.length > 100) {
console.log("Sending messages.");
process.send({type: "message batch", messages: messagesToSend});
messagesToSend.splice(0); // empty the array
}
}
// function to send messages when we get a chance to prevent the client from waiting too long
function sendMessagesWithEventLoopTurnaround() {
if (messagesToSend.length > 0) {
process.send({type: "message batch", messages: messagesToSend});
messagesToSend.splice(0); // empty the array
}
setTimeout(sendMessagesWithEventLoopTurnAround, 10);
}
function executeCode(code) {
// setup child process to calculate the source map
importantDataCalculator = fork("./runtime");
importantDataCalculator.on("message", function (msg) {
if (msg.type === "result") {
importantData = msg.data;
console.log("Finished source map generation!")
} else if (msg.type === "error") {
importantData = null;
} else {
throw new Error("Unknown message from dataGenerator!");
}
if (pausedExecution) {
// execution is waiting for the data
pausedExecution.run();
}
});
// setup automatic messages sending in the event loop
sendMessagesWithEventLoopTurnaround();
// instrument the code to call a function called "callback", which will be defined in the sandbox
instrumentCode(code);
// prepare the sandbox
var sandbox = Contextify(new utils.Sandbox(callback)); // the callback to be called from the instrumented code is defined in the sandbox
// wrap the execution of the code in a Fiber, so it can be paused
Fiber(function () {
sandbox.run(code);
// send messages because the execution finished
console.log("Sending messages.");
process.send({type: "message batch", messages: messagesToSend});
messagesToSend.splice(0); // empty the array
}).run();
}
process.on("message", function (msg) {
if (msg.type === "code") {
executeCode(msg.code, msg.options);
}
});
So to summarize:
When new code is received a new process is created to execute it. This process first instruments and then executes it. Before doing so it starts a third process to calculate a source map for the code. The instrumented code calls the function named callback in the code above handing messages to the runtime that report progress of the executing code. These have to be adjusted sometimes, one example for which an adjustment is necessary are "console log" messages. To do this adjustment, the source map calculated by the third process is necessary. When the callback needs the source map it calls getSourceMap() which waits for the sourceMap process to finish its calculation and yields control to the event loop during that waiting time to enable itself to receive messages from the sourceMap process (otherwise the event loop would be blocked and no message could be received).
Messages passed to the callback are first stored in an array and then sent as a batch to the main process for performance reasons. However, we do not want the main process to wait too long for messages so in addition to sending a batch of messages when the threshold is reached we scheduled a function sendMessagesWithEventLoopTurnAround() to run in the event loop and check whether there are messages to send. This has two advantages:
When the execution process is waiting for the source map process it can use the time to send the messages it already got. So if the sourceMap process takes several seconds to finish, the main process does not have to wait the same time for messages that have already been created and contain correct data.
When the executing code generates only very little messages in the event loop (e.g. by a function scheduled with setTimeInterval(f, 2000) which only creates one single message per execution) it does not have to wait a long time until the message buffer is full (in this example 200s) but receives updates about the progress every 10ms (if anything changed).
The Problem
What works
This setup works fine in the following cases
I do not use fibers and a separate process to calculate the source map. Instead I calculate the source map before the code is executed. In that case all the code to execute I tried works as expected.
I do use fibers and a separate process and execute code for which I do not need the source map. E.g.
var a = 2;
or
setTimeout(function () { var a = 2;}, 10)
In the first case the output looks like this.
Starting source map generation.
Message: 'variables init'
Message: 'program finished'
Sending messages.
Finished source map generation.
Source map generator process exited with code: 0 after receiving signal: null
I do use fibers and a separate process and code for which I need the source map but that doesn't use the event loop, e.g.
console.log("foo");
In that case the output looks like this:
Starting source map generation.
Message: 'console log'
Waiting for source map generation.
Finished source map generation.
Wait is over.
Message: 'program finished'
Sending messages.
Source map generator process exited with code: 0 after receiving signal: null
I do use fibers and a separate process and code for which I need the source map and which uses the event loop, but the source map is only needed when the source map calculation is already finished (so no waiting).
E.g.
setTimeout(function () {
console.log("foo!");
}, 100); // the source map generation takes around 100ms
In that case the output looks like this:
Starting source map generation.
Message: 'function declaration'
Message: 'program finished'
Sending messages.
Finished source map generation.
Source map generator process exited with code: 0 after receiving signal: null
Message: 'function enter'
Message: 'console log'
Message: 'function exit'
Sending messages in event loop.
What doesn't work
It only breaks if I use fibers and separate processes and code that uses the event loop but needs the source map before it is finished, e.g.
setTimeout(function () {
console.log("foo!");
}, 10); // the source map generation takes around 100ms
The output then looks like this:
Starting source map generation.
Message: 'function declaration'
Message: 'program finished'
Sending messages.
Message: 'function enter'
Message: 'console log'
Waiting for source map generation.
/path/to/code/runtime.js:113
Fiber.yield();
^
getSourceMap (/path/to/code/runtime.js:113:28),callback (/path/to/code/runtime.js:183:9),/path/to/code/utils.js:102:9,Object.console.log (/path/to/code/utils.js:190:13),null._onTimeout (<anonymous>:56:21),Timer.listOnTimeout [as ontimeout] (timers.js:110:15)
Child process exited with code: 8 after receiving signal: null
The process that crashes here is the execution process. However, I can't find out why that happens or how to track down the problem. As you can see above, I already added several log statements to find out what is happening. I am also listening to the "uncaught exception" event on the execution process, but that does not seem to be fired.
Also, the log message we see in the end is not one of mine, since I prefix my log messages with some kind of description string, so it's one created by node.js itself. I neither understand why this occurs, nor what exit code 8 or even what else I could do to narrow down the cause.
Any help would be greatly appreciated.

As usual, once one finishes describing the problem completely a solution presents itself.
The problem, I think, is that code executed by setTimeout is not wrapped in a Fiber. So calling Fiber.yield() inside that code crashes, understandably.
Therefore, the solution is to overwrite setTimeout in the executed code. Since I am already providing a sandbox with some special functions (e.g. my own console object) I can also exchange the implementation of setTimeout by one that wraps the executed function in a fiber, like so:
// this being the sandbox object, which si the global object for the executing code
this.setTimeout = function (functionToExecute, delay) {
return setTimeout(function () {
fibers(functionToExecute).run();
}, delay);
};
This implementation does not support passing additional parameters to setTimeout but it could trivially be expanded to do so. It also does not support the version of setTimeout that is passed a string of code instead of a function, but who would use that anyway?
To make it work completely I would have to exchange the implementations of setTimeout, setInterval, setImmediate and process.nextTick. Anything else that is usually used to fulfill such a role?
This only leaves the question whether there is an easier way to do this than reimplementing each of these functions?

Related

How do I avoid a race condition with Node.js's process.send?

What exactly happens when a child process (created by child_process.fork()) in Node sends a message to its parent (process.send()) before the parent has an event handler for the message (child.on("message",...))? (It seems, at least, like there must be some kind of buffer.)
In particular, I'm faced with what seems like an unavoidable race condition - I cannot install a message handler on a child process until after I've finished the call to fork, but the child could potentially send me (the parent) a message right away. What guarantee do I have that, assuming a particularly horrible interleaving of OS processes, I will receive all messages sent by my child?
Consider the following example code:
parent.js:
const child_process = require("child_process");
const child_module = require.resolve("./child");
const run = async () => {
console.log("parent start");
const child = child_process.fork(child_module);
await new Promise(resolve => setTimeout(resolve, 40));
console.log("add handler");
child.on("message", (m) => console.log("parent receive:", m));
console.log("parent end");
};
run();
child.js:
console.log("child start");
process.send("123abc");
console.log("child end");
In the above, I'm hoping to simulate a "bad interleaving" by preventing the message handler from being installed for a few milliseconds (suppose that a context switch takes place immediately after the fork, and that some other processes run for a while before the parent's node.js process can be scheduled again). In my own testing, the parent seems to "reliably" receive the message with numbers << 40ms (e.g. 20ms), but for values >35ms, it's flaky at best, and for values >> 40ms (e.g. 50 or 60), the message is never received. What's special about these numbers - just how fast the processes are being scheduled on my machine?
It seems to be independent of whether the handler is installed before or after the message is sent. For example, I've observed both of the following executions with the timeout set to 40 milliseconds. Notice that in each one, the child's "end" message (indicating that the process.send() has already happened) comes before "add handler". In one case, the message is received, but in the next, it's lost. It's possible, I suppose, that buffering of the standard output of these processes could potentially cause these outputs to be misrepresenting the true execution - is that's what's going on here?
Execution A:
parent start
child start
child end
add handler
parent end
parent receive: 123abc
Execution B:
parent start
child start
child end
add handler
parent end
In short - is there a solution to this apparent race condition? I seem to be able to "reliably" receive messages as long as I install a handler "soon" enough - but am I just getting lucky, or is there some guarantee that I'm getting? How do I ensure, without relying on luck, that this code will always work (barring cosmic rays, spilled coffee, etc...)? I can't seem to find any detail about how this is supposed to work in the Node documentation.
What exactly happens when a child process (created by child_process.fork()) in Node sends a message to its parent (process.send()) before the parent has an event handler for the message (child.on("message",...))? (It seems, at least, like there must be some kind of buffer.)
First off, the fact that a message arrived from another process goes into the nodejs event queue. It won't be processed until the current nodejs code finishes whatever it was doing and returns control back to the event loop so that it can process the next event in the event queue. If that moment arrives before there is any listener for that incoming event, then it is just received and then thrown away. The message arrives, the code looks to call any registered event handlers and if there are none, then it's done. It's the same as if you call eventEmitter.emit("someMsg", data) and there are no listeners for "someMsg". But, read on, there is hope for your specific situation.
In particular, I'm faced with what seems like an unavoidable race condition - I cannot install a message handler on a child process until after I've finished the call to fork, but the child could potentially send me (the parent) a message right away. What guarantee do I have that, assuming a particularly horrible interleaving of OS processes, I will receive all messages sent by my child?
Fortunately, due to the single-threaded, event-driven nature of nodejs, this is not a problem. You can install the message handler before there's any chance of the message arriving and being processed. This is because even though the child may be started up and may be running independently using other CPUs or interleaved with your process, the single-threaded nature and the event driven architecture help you solve this problem.
If you do something like this:
const child = child_process.fork(child_module);
child.on("message", (m) => console.log("parent receive:", m));
Then you are guaranteed that your message handler will be installed before there's any chance of an incoming message being processed and you will not miss it. This is because the interpreter is busy running these two lines of code and does not return control back to the event loop until after these two lines of code are run. Therefore, no incoming message from the child_module can get processed before your child.on(...) handler is installed.
Now, if you purposely do return back to the event loop as you are doing here with the await before installing your event handler like your code here:
const run = async () => {
console.log("parent start");
const child = child_process.fork(child_module);
// this await allows events in the event queue to be processed
// while this function is suspended waiting for the await
await new Promise(resolve => setTimeout(resolve, 40));
console.log("add handler");
child.on("message", (m) => console.log("parent receive:", m));
console.log("parent end");
};
run();
Then, you have purposely introduced a race condition with your own coding that can be avoided by just installing the event handler BEFORE the await like this:
const run = async () => {
console.log("parent start");
// no events will be processed before these next three statements run
const child = child_process.fork(child_module);
console.log("add handler");
child.on("message", (m) => console.log("parent receive:", m));
await new Promise(resolve => setTimeout(resolve, 40));
console.log("parent end");
};
run();

CAPL code, putting delay in the code

I have a CAPL test code that controls the start of CAN signal sending. My goal is to delay the start of the sending process.
My idea to do this is via a setTimer() function in combination with isTimerActive().
In general my code looks the following:
main() {
CANstart();
function_2();
function_3();
}
CANstart() {
SetTimer(Delay, 5000); //Timer initialization, set to be 5000ms
while (isTimerActive()==1) {
// this while loop avoids that the code is proceding while the settimer exception is being called and executed
}
StartCANTransmitting(); // After this function, jump back to main and proceed with function_2
}
on timer Delay {
// Do nothing, just wait
}
The program code above lead to being stuck at that point, CANoe does not response and the only way I can end the simulation is via taskmanager.
Further examination from my side lead to the conclusion that the timer need more time to process and is not executed at all.
Without the isTimerActive() function, the program code does not wait for the timer to finish and there is no delay at all. Seems like the code runs through without waiting for the exception.
Seems like CAPL handles loops very bad.
I check out stackoverflow and the following forum posts talk about very similar issues that I have without offering any working solutions:
CAPL Programming usage of Timer as a delay
Are timers running, while loops are active?
Delay function in CAPL apart from testwaitfortimeout()
I see a great deal of issues with your code. It actually does not feel like code at all, but more like pseudo-code. Does it compile on your CAPL browser?
main() {
CANstart();
function_2();
function_3();
}
If this is a function declaration, then it is missing both a type and a return value. In addition, when are you expecting main() to be executed?
The same applies to:
CANstart()
Let us make a step back. You need to delay the beginning of can transmitting. If you need to do so because you have code outside CANalyzer/CANoe running, then I suggest you call the application via command line (refer to the guide for more help).
If you need, however, to have blocks running in your setup configuration, like a Replay block, a Loggin block or whatever, I suggest you to do the following:
variables {
/* define your variables here. You need to define all messages you want to send and respective signal values if not defaulted */
message 0x12345678 msg1; // refer to CAPL guide on how to define message type variables
msTimer delay;
msTimer msgClock1;
}
on start {
/* when you hit the start measurements button (default F9) */
setTimer(delay, 5000); // also note your syntax is wrong in the example
}
on timer delay {
/* when timer expires, start sending messages */
output(msg1); // send your message
setTimer(msgClock1,250); // set timer for cyclic message sending
}
on timer msgClock1 {
/* this mimicks the behaviour of a IG block */
setTimer(msgClock1,250); // keep sending message
output(msg1)
}
Does this achieve your goal? Please feel free to ask for more details.
It appears that you have a problem with the while (isTimerActive()==1) { statement.
CAPL function int isTimerActive requires the parameters timer or mstimer variable and return values
1, if the timer is active otherwise 0.
You can check if the timer is active and the time to elapse in the following way.
timer t;
write("Active? %d", isTimerActive(t)); // writes 0
setTimer(t, 5);
write("Active? %d", isTimerActive(t)); // writes 1
write("Time to elapse: %d",timeToElapse(t)); // Writes 5
try adding the parameter timer at while (isTimerActive(Delay)==1) {
I would not suggest using the while statement instead you can use the timer directly to call the function StartCANTransmitting() and your Main() should be MainTest()
void MainTest()
{
TestModuleTitle("Sample Tests");
TestModuleDescription("This test module calls some test cases to demonstrate ");
CANstart();
if (TestGetVerdictLastTestCase() == 1)
Write("CANstart failed.");
else
Write("CANstart passed.");
}
testcase CANstart() {
// add info block to test case in report
TestReportAddMiscInfoBlock("Used Test Parameters");
TestReportAddMiscInfo("Max. voltage", "19.5 V");
TestReportAddMiscInfo("Max. current", "560 mA");
TestReportAddMiscInfo("StartCANTransmitting");
SetTimer(Delay, 5000); //Timer initialization, set to be 5000ms
}
on timer Delay {
StartCANTransmitting();
}

How to forcibly keep a Node.js process from terminating?

TL;DR
What is the best way to forcibly keep a Node.js process running, i.e., keep its event loop from running empty and hence keeping the process from terminating? The best solution I could come up with was this:
const SOME_HUGE_INTERVAL = 1 << 30;
setInterval(() => {}, SOME_HUGE_INTERVAL);
Which will keep an interval running without causing too much disturbance if you keep the interval period long enough.
Is there a better way to do it?
Long version of the question
I have a Node.js script using Edge.js to register a callback function so that it can be called from inside a DLL in .NET. This function will be called 1 time per second, sending a simple sequence number that should be printed to the console.
The Edge.js part is fine, everything is working. My only problem is that my Node.js process executes its script and after that it runs out of events to process. With its event loop empty, it just terminates, ignoring the fact that it should've kept running to be able to receive callbacks from the DLL.
My Node.js script:
var
edge = require('edge');
var foo = edge.func({
assemblyFile: 'cs.dll',
typeName: 'cs.MyClass',
methodName: 'Foo'
});
// The callback function that will be called from C# code:
function callback(sequence) {
console.info('Sequence:', sequence);
}
// Register for a callback:
foo({ callback: callback }, true);
// My hack to keep the process alive:
setInterval(function() {}, 60000);
My C# code (the DLL):
public class MyClass
{
Func<object, Task<object>> Callback;
void Bar()
{
int sequence = 1;
while (true)
{
Callback(sequence++);
Thread.Sleep(1000);
}
}
public async Task<object> Foo(dynamic input)
{
// Receives the callback function that will be used:
Callback = (Func<object, Task<object>>)input.callback;
// Starts a new thread that will call back periodically:
(new Thread(Bar)).Start();
return new object { };
}
}
The only solution I could come up with was to register a timer with a long interval to call an empty function just to keep the scheduler busy and avoid getting the event loop empty so that the process keeps running forever.
Is there any way to do this better than I did? I.e., keep the process running without having to use this kind of "hack"?
The simplest, least intrusive solution
I honestly think my approach is the least intrusive one:
setInterval(() => {}, 1 << 30);
This will set a harmless interval that will fire approximately once every 12 days, effectively doing nothing, but keeping the process running.
Originally, my solution used Number.POSITIVE_INFINITY as the period, so the timer would actually never fire, but this behavior was recently changed by the API and now it doesn't accept anything greater than 2147483647 (i.e., 2 ** 31 - 1). See docs here and here.
Comments on other solutions
For reference, here are the other two answers given so far:
Joe's (deleted since then, but perfectly valid):
require('net').createServer().listen();
Will create a "bogus listener", as he called it. A minor downside is that we'd allocate a port just for that.
Jacob's:
process.stdin.resume();
Or the equivalent:
process.stdin.on("data", () => {});
Puts stdin into "old" mode, a deprecated feature that is still present in Node.js for compatibility with scripts written prior to Node.js v0.10 (reference).
I'd advise against it. Not only it's deprecated, it also unnecessarily messes with stdin.
Use "old" Streams mode to listen for a standard input that will never come:
// Start reading from stdin so we don't exit.
process.stdin.resume();
Here is IFFE based on the accepted answer:
(function keepProcessRunning() {
setTimeout(keepProcessRunning, 1 << 30);
})();
and here is conditional exit:
let flag = true;
(function keepProcessRunning() {
setTimeout(() => flag && keepProcessRunning(), 1000);
})();
You could use a setTimeout(function() {""},1000000000000000000); command to keep your script alive without overload.
spin up a nice repl, node would do the same if it didn't receive an exit code anyway:
import("repl").then(repl=>
repl.start({prompt:"\x1b[31m"+process.versions.node+": \x1b[0m"}));
I'll throw another hack into the mix. Here's how to do it with Promise:
new Promise(_ => null);
Throw that at the bottom of your .js file and it should run forever.

Run NodeJS event loop / wait for child process to finish

I first tried a general description of the problem, then some more detail why the usual approaches don't work. If you would like to read these abstracted explanations go on. In the end I explain the greater problem and the specific application, so if you would rather read that, jump to "Actual application".
I am using a node.js child-process to do some computationally intensive work. The parent process does it's work but at some point in the execution it reaches a point where it must have the information from the child process before continuing. Therefore, I am looking for a way to wait for the child-process to finish.
My current setup looks somewhat like this:
importantDataCalculator = fork("./runtime");
importantDataCalculator.on("message", function (msg) {
if (msg.type === "result") {
importantData = msg.data;
} else if (msg.type === "error") {
importantData = null;
} else {
throw new Error("Unknown message from dataGenerator!");
}
});
and somewhere else
function getImportantData() {
while (importantData === undefined) {
// wait for the importantDataGenerator to finish
}
if (importantData === null) {
throw new Error("Data could not be generated.");
} else {
// we should have a proper data now
return importantData;
}
}
So when the parent process starts, it executes the first bit of code, spawning a child process to calculate the data and goes on doing it's own bit of work. When the time comes that it needs the result from the child process to continue it calls getImportantData(). So the idea is that getImportantData() blocks until the data is calculated.
However, the way I used doesn't work. I think this is due to me preventing the event loop from executing by using the while-loop. And since the Event-Loop does not execute no message from the child-process can be received and thus the condition of the while-loop can not change, making it an infinite loop.
Of course, I don't really want to use this kind of while-loop. What I would rather do is tell node.js "execute one iteration of the event loop, then get back to me". I would do this repeatedly, until the data I need was received and then continue the execution where I left of by returning from the getter.
I realize that his poses the danger of reentering the same function several times, but the module I want to use this in does almost nothing on the event loop except for waiting for this message from the child process and sending out other messages reporting it's progress, so that shouldn't be a problem.
Is there way to execute just one iteration of the event loop in Node.js? Or is there another way to achieve something similar? Or is there a completely different approach to achieve what I'm trying to do here?
The only solution I could think of so far is to change the calculation in such a way that I introduce yet another process. In this scenario, there would be the process calculating the important data, a process calculating the bits of data for which the important data is not needed and a parent process for these two, which just waits for data from the two child-processes and combines the pieces when they arrive. Since it does not have to do any computationally intensive work itself, it can just wait for events from the event loop (=messages) and react to them, forwarding the combined data as necessary and storing pieces of data that cannot be combined yet.
However this introduces yet another process and even more inter-process communication, which introduces more overhead, which I would like to avoid.
Edit
I see that more detail is needed.
The parent process (let's call it process 1) is itself a process spawned by another process (process 0) to do some computationally intensive work. Actually, it just executes some code over which I don't have control, so I cannot make it work asynchronously. What I can do (and have done) is make the code that is executed regularly call a function to report it's progress and provided partial results. This progress report is then send back to the original process via IPC.
But in rare cases the partial results are not correct, so they have to be modified. To do so I need some data I can calculate independently from the normal calculation. However, this calculation could take several seconds; thus, I start another process (process 2) to do this calculation and provide the result to process 1, via an IPC message. Now process 1 and 2 are happily calculating there stuff, and hopefully the corrective data calculated by process 2 is finished before process 1 needs it. But sometimes one of the early results of process 1 needs to be corrected and in that case I have to wait for process 2 to finish its calculation. Blocking the event loop of process 1 is theoretically not a problem, since the main process (process 0) would not be be affected by it. The only problem is, that by preventing the further execution of code in process 1 I am also blocking the event loop, which prevents it from ever receiving the result from process 2.
So I need to somehow pause the further execution of code in process 1 without blocking the event loop. I was hoping that there was a call like process.runEventLoopIteration that executes an iteration of the event loop and then returns.
I would then change the code like this:
function getImportantData() {
while (importantData === undefined) {
process.runEventLoopIteration();
}
if (importantData === null) {
throw new Error("Data could not be generated.");
} else {
// we should have a proper data now
return importantData;
}
}
thus executing the event loop until I have received the necessary data but NOT continuing the execution of the code that called getImportantData().
Basically what I'm doing in process 1 is this:
function callback(partialDataMessage) {
if (partialDataMessage.needsCorrection) {
getImportantData();
// use data to correct message
process.send(correctedMessage); // send corrected result to main process
} else {
process.send(partialDataMessage); // send unmodified result to main process
}
}
function executeCode(code) {
run(code, callback); // the callback will be called from time to time when the code produces new data
// this call is synchronous, run is blocking until the calculation is finished
// so if we reach this point we are done
// the only way to pause the execution of the code is to NOT return from the callback
}
Actual application/implementation/problem
I need this behaviour for the following application. If you have a better approach to achieve this feel free to propose it.
I want to execute arbitrary code and be notified about what variables it changes, what functions are called, what exceptions occur etc. I also need the location of these events in the code to be able to display the gathered information in the UI next to the original code.
To achieve this, I instrument the code and insert callbacks into it. I then execute the code, wrapping the execution in a try-catch block. Whenever the callback is called with some data about the execution (e.g. a variable change) I send a message to the main process telling it about the change. This way, the user is notified about the execution of the code, while it is running. The location information for the events generated by these callbacks is added to the callback call during the instrumentation, so that is not a problem.
The problem appears, when an exception occurs. I also want to notify the user about exceptions in the tested code. Therefore, I wrapped the execution of the code in a try-catch and any exceptions that get out of the execution are caught and send to the user interface. But the location of the errors is not correct. An Error object created by node.js has a complete call stack so it knows where it occurred. But this location if relative to the instrumented code, so I cannot use this location information as is, to display the error next to the original code. I need to transform this location in the instrumented code into a location in the original code. To do so, after instrumenting the code, I calculate a source map to map locations in the instrumented code to locations in the original code. However, this calculation might take several seconds. So, I figured, I would start a child process to calculate the source map, while the execution of the instrumented code is already started. Then, when an exception occurs, I check whether the source map has already been calculated, and if it hasn't I wait for the calculation to finish to be able to correct the location.
Since the code to be executed and watched can be completely arbitrary I cannot trivially rewrite it to be asynchronous. I only know that it calls the provided callback, because I instrumented the code to do so. I also cannot just store the message and return to continue the execution of the code, checking back during the next call whether the source map has been finished, because continuing the execution of the code would also block the event-loop, preventing the calculated source map from ever being received in the execution process. Or if it is received, then only after the code to execute has completely finished, which could be quite late or never (if the code to execute contains an infinite loop). But before I receive the sourceMap I cannot send further updates about the execution state. Combined, this means I would only be able to send the corrected progress messages after the code to execute has finished (which might be never) which completely defeats the purpose of the program (to enable the programmer to watch what the code does, while it executes).
Temporarily surrendering control to the event loop would solve this problem. However, that does not seem to be possible. The other idea I have is to introduce a third process which controls both the execution process and the sourceMapGeneration process. It receives progress messages from the execution process and if any of the messages needs correction it waits for the sourceMapGeneration process. Since the processes are independent, the controlling process can store the received messages and wait for the sourceMapGeneration process while the execution process continues executing, and as soon as it receives the source map, it corrects the messages and sends all of them off.
However, this would not only require yet another process (overhead) it also means I have to transfer the code once more between processes and since the code can have thousands of line that in itself can take some time, so I would like to move it around as little as possible.
I hope this explains, why I cannot and didn't use the usual "asynchronous callback" approach.
Adding a third ( :) ) solution to your problem after you clarified what behavior you seek I suggest using Fibers.
Fibers let you do co-routines in nodejs. Coroutines are functions that allow multiple entry/exit points. This means you will be able to yield control and resume it as you please.
Here is a sleep function from the official documentation that does exactly that, sleep for a given amount of time and perform actions.
function sleep(ms) {
var fiber = Fiber.current;
setTimeout(function() {
fiber.run();
}, ms);
Fiber.yield();
}
Fiber(function() {
console.log('wait... ' + new Date);
sleep(1000);
console.log('ok... ' + new Date);
}).run();
console.log('back in main');
You can place the code that does the waiting for the resource in a function, causing it to yield and then run again when the task is done.
For example, adapting your example from the question:
var pausedExecution, importantData;
function getImportantData() {
while (importantData === undefined) {
pausedExecution = Fiber.current;
Fiber.yield();
pausedExecution = undefined;
}
if (importantData === null) {
throw new Error("Data could not be generated.");
} else {
// we should have proper data now
return importantData;
}
}
function callback(partialDataMessage) {
if (partialDataMessage.needsCorrection) {
var theData = getImportantData();
// use data to correct message
process.send(correctedMessage); // send corrected result to main process
} else {
process.send(partialDataMessage); // send unmodified result to main process
}
}
function executeCode(code) {
// setup child process to calculate the data
importantDataCalculator = fork("./runtime");
importantDataCalculator.on("message", function (msg) {
if (msg.type === "result") {
importantData = msg.data;
} else if (msg.type === "error") {
importantData = null;
} else {
throw new Error("Unknown message from dataGenerator!");
}
if (pausedExecution) {
// execution is waiting for the data
pausedExecution.run();
}
});
// wrap the execution of the code in a Fiber, so it can be paused
Fiber(function () {
runCodeWithCallback(code, callback); // the callback will be called from time to time when the code produces new data
// this callback is synchronous and blocking,
// but it will yield control to the event loop if it has to wait for the child-process to finish
}).run();
}
Good luck! I always say it is better to solve one problem in 3 ways than solving 3 problems the same way. I'm glad we were able to work out something that worked for you. Admittingly, this was a pretty interesting question.
The rule of asynchronous programming is, once you've entered asynchronous code, you must continue to use asynchronous code. While you can continue to call the function over and over via setImmediate or something of the sort, you still have the issue that you're trying to return from an asynchronous process.
Without knowing more about your program, I can't tell you exactly how you should structure it, but by and large the way to "return" data from a process that involves asynchronous code is to pass in a callback; perhaps this will put you on the right track:
function getImportantData(callback) {
importantDataCalculator = fork("./runtime");
importantDataCalculator.on("message", function (msg) {
if (msg.type === "result") {
callback(null, msg.data);
} else if (msg.type === "error") {
callback(new Error("Data could not be generated."));
} else {
callback(new Error("Unknown message from sourceMapGenerator!"));
}
});
}
You would then use this function like this:
getImportantData(function(error, data) {
if (error) {
// handle the error somehow
} else {
// `data` is the data from the forked process
}
});
I talk about this in a bit more detail in one of my screencasts, Thinking Asynchronously.
What you are running into is a very common scenario that skilled programmers who are starting with nodejs often struggle with.
You're correct. You can't do this the way you are attempting (loop).
The main process in node.js is single threaded and you are blocking the event loop.
The simplest way to resolve this is something like:
function getImportantData() {
if(importantData === undefined){ // not set yet
setImmediate(getImportantData); // try again on the next event loop cycle
return; //stop this attempt
}
if (importantData === null) {
throw new Error("Data could not be generated.");
} else {
// we should have a proper data now
return importantData;
}
}
What we are doing, is that the function is re-attempting to process the data on the next iteration of the event loop using setImmediate.
This introduces a new problem though, your function returns a value. Since it will not be ready, the value you are returning is undefined. So you have to code reactively. You need to tell your code what to do when the data arrives.
This is typically done in node with a callback
function getImportantData(err,whenDone) {
if(importantData === undefined){ // not set yet
setImmediate(getImportantData.bind(null,whenDone)); // try again on the next event loop cycle
return; //stop this attempt
}
if (importantData === null) {
err("Data could not be generated.");
} else {
// we should have a proper data now
whenDone(importantData);
}
}
This can be used in the following way
getImportantData(function(err){
throw new Error(err); // error handling function callback
}, function(data){ //this is whenDone in our case
//perform actions on the important data
})
Your question (updated) is very interesting, it appears to be closely related to a problem I had with asynchronously catching exceptions. (Also Brandon and Ihad an interesting discussion with me about it! It's a small world)
See this question on how to catch exceptions asynchronously. The key concept is that you can use (assuming nodejs 0.8+) nodejs domains to constrain the scope of an exception.
This will allow you to easily get the location of the exception since you can surround asynchronous blocks with atry/catch. I think this should solve the bigger issue here.
You can find the relevant code in the linked question. The usage is something like:
atry(function() {
setTimeout(function(){
throw "something";
},1000);
}).catch(function(err){
console.log("caught "+err);
});
Since you have access to the scope of atry you can get the stack trace there which would let you skip the more complicated source-map usage.
Good luck!

Make node.js not exit on error

I am working on a websocket oriented node.js server using Socket.IO. I noticed a bug where certain browsers aren't following the correct connect procedure to the server, and the code isn't written to gracefully handle it, and in short, it calls a method to an object that was never set up, thus killing the server due to an error.
My concern isn't with the bug in particular, but the fact that when such errors occur, the entire server goes down. Is there anything I can do on a global level in node to make it so if an error occurs it will simply log a message, perhaps kill the event, but the server process will keep on running?
I don't want other users' connections to go down due to one clever user exploiting an uncaught error in a large included codebase.
You can attach a listener to the uncaughtException event of the process object.
Code taken from the actual Node.js API reference (it's the second item under "process"):
process.on('uncaughtException', function (err) {
console.log('Caught exception: ', err);
});
setTimeout(function () {
console.log('This will still run.');
}, 500);
// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
console.log('This will not run.');
All you've got to do now is to log it or do something with it, in case you know under what circumstances the bug occurs, you should file a bug over at Socket.IO's GitHub page:
https://github.com/LearnBoost/Socket.IO-node/issues
Using uncaughtException is a very bad idea.
The best alternative is to use domains in Node.js 0.8. If you're on an earlier version of Node.js rather use forever to restart your processes or even better use node cluster to spawn multiple worker processes and restart a worker on the event of an uncaughtException.
From: http://nodejs.org/api/process.html#process_event_uncaughtexception
Warning: Using 'uncaughtException' correctly
Note that 'uncaughtException' is a crude mechanism for exception handling intended to be used only as a last resort. The event should not be used as an equivalent to On Error Resume Next. Unhandled exceptions inherently mean that an application is in an undefined state. Attempting to resume application code without properly recovering from the exception can cause additional unforeseen and unpredictable issues.
Exceptions thrown from within the event handler will not be caught. Instead the process will exit with a non-zero exit code and the stack trace will be printed. This is to avoid infinite recursion.
Attempting to resume normally after an uncaught exception can be similar to pulling out of the power cord when upgrading a computer -- nine out of ten times nothing happens - but the 10th time, the system becomes corrupted.
The correct use of 'uncaughtException' is to perform synchronous cleanup of allocated resources (e.g. file descriptors, handles, etc) before shutting down the process. It is not safe to resume normal operation after 'uncaughtException'.
To restart a crashed application in a more reliable way, whether uncaughtException is emitted or not, an external monitor should be employed in a separate process to detect application failures and recover or restart as needed.
I just did a bunch of research on this (see here, here, here, and here) and the answer to your question is that Node will not allow you to write one error handler that will catch every error scenario that could possibly occur in your system.
Some frameworks like express will allow you to catch certain types of errors (when an async method returns an error object), but there are other conditions that you cannot catch with a global error handler. This is a limitation (in my opinion) of Node and possibly inherent to async programming in general.
For example, say you have the following express handler:
app.get("/test", function(req, res, next) {
require("fs").readFile("/some/file", function(err, data) {
if(err)
next(err);
else
res.send("yay");
});
});
Let's say that the file "some/file" does not actually exist. In this case fs.readFile will return an error as the first argument to the callback method. If you check for that and do next(err) when it happens, the default express error handler will take over and do whatever you make it do (e.g. return a 500 to the user). That's a graceful way to handle an error. Of course, if you forget to call next(err), it doesn't work.
So that's the error condition that a global handler can deal with, however consider another case:
app.get("/test", function(req, res, next) {
require("fs").readFile("/some/file", function(err, data) {
if(err)
next(err);
else {
nullObject.someMethod(); //throws a null reference exception
res.send("yay");
}
});
});
In this case, there is a bug if your code that results in you calling a method on a null object. Here an exception will be thrown, it will not be caught by the global error handler, and your node app will terminate. All clients currently executing requests on that service will get suddenly disconnected with no explanation as to why. Ungraceful.
There is currently no global error handler functionality in Node to handle this case. You cannot put a giant try/catch around all your express handlers because by the time your asyn callback executes, those try/catch blocks are no longer in scope. That's just the nature of async code, it breaks the try/catch error handling paradigm.
AFAIK, your only recourse here is to put try/catch blocks around the synchronous parts of your code inside each one of your async callbacks, something like this:
app.get("/test", function(req, res, next) {
require("fs").readFile("/some/file", function(err, data) {
if(err) {
next(err);
}
else {
try {
nullObject.someMethod(); //throws a null reference exception
res.send("yay");
}
catch(e) {
res.send(500);
}
}
});
});
That's going to make for some nasty code, especially once you start getting into nested async calls.
Some people think that what Node does in these cases (that is, die) is the proper thing to do because your system is in an inconsistent state and you have no other option. I disagree with that reasoning but I won't get into a philosophical debate about it. The point is that with Node, your options are lots of little try/catch blocks or hope that your test coverage is good enough so that this doesn't happen. You can put something like upstart or supervisor in place to restart your app when it goes down but that's simply mitigation of the problem, not a solution.
Node.js has a currently unstable feature called domains that appears to address this issue, though I don't know much about it.
I've just put together a class which listens for unhandled exceptions, and when it see's one it:
prints the stack trace to the console
logs it in it's own logfile
emails you the stack trace
restarts the server (or kills it, up to you)
It will require a little tweaking for your application as I haven't made it generic as yet, but it's only a few lines and it might be what you're looking for!
Check it out!
Note: this is over 4 years old at this point, unfinished, and there may now be a better way - I don't know!)
process.on
(
'uncaughtException',
function (err)
{
var stack = err.stack;
var timeout = 1;
// print note to logger
logger.log("SERVER CRASHED!");
// logger.printLastLogs();
logger.log(err, stack);
// save log to timestamped logfile
// var filename = "crash_" + _2.formatDate(new Date()) + ".log";
// logger.log("LOGGING ERROR TO "+filename);
// var fs = require('fs');
// fs.writeFile('logs/'+filename, log);
// email log to developer
if(helper.Config.get('email_on_error') == 'true')
{
logger.log("EMAILING ERROR");
require('./Mailer'); // this is a simple wrapper around nodemailer http://documentup.com/andris9/nodemailer/
helper.Mailer.sendMail("GAMEHUB NODE SERVER CRASHED", stack);
timeout = 10;
}
// Send signal to clients
// logger.log("EMITTING SERVER DOWN CODE");
// helper.IO.emit(SIGNALS.SERVER.DOWN, "The server has crashed unexpectedly. Restarting in 10s..");
// If we exit straight away, the write log and send email operations wont have time to run
setTimeout
(
function()
{
logger.log("KILLING PROCESS");
process.exit();
},
// timeout * 1000
timeout * 100000 // extra time. pm2 auto-restarts on crash...
);
}
);
Had a similar problem. Ivo's answer is good. But how can you catch an error in a loop and continue?
var folder='/anyFolder';
fs.readdir(folder, function(err,files){
for(var i=0; i<files.length; i++){
var stats = fs.statSync(folder+'/'+files[i]);
}
});
Here, fs.statSynch throws an error (against a hidden file in Windows that barfs I don't know why). The error can be caught by the process.on(...) trick, but the loop stops.
I tried adding a handler directly:
var stats = fs.statSync(folder+'/'+files[i]).on('error',function(err){console.log(err);});
This did not work either.
Adding a try/catch around the questionable fs.statSynch() was the best solution for me:
var stats;
try{
stats = fs.statSync(path);
}catch(err){console.log(err);}
This then led to the code fix (making a clean path var from folder and file).
I found PM2 as the best solution for handling node servers, single and multiple instances
One way of doing this would be spinning the child process and communicate with the parent process via 'message' event.
In the child process where the error occurs, catch that with 'uncaughtException' to avoid crashing the application. Mind that Exceptions thrown from within the event handler will not be caught. Once the error is caught safely, send a message like: {finish: false}.
Parent Process would listen to the message event and send the message again to the child process to re-run the function.
Child Process:
// In child.js
// function causing an exception
const errorComputation = function() {
for (let i = 0; i < 50; i ++) {
console.log('i is.......', i);
if (i === 25) {
throw new Error('i = 25');
}
}
process.send({finish: true});
}
// Instead the process will exit with a non-zero exit code and the stack trace will be printed. This is to avoid infinite recursion.
process.on('uncaughtException', err => {
console.log('uncaught exception..',err.message);
process.send({finish: false});
});
// listen to the parent process and run the errorComputation again
process.on('message', () => {
console.log('starting process ...');
errorComputation();
})
Parent Process:
// In parent.js
const { fork } = require('child_process');
const compute = fork('child.js');
// listen onto the child process
compute.on('message', (data) => {
if (!data.finish) {
compute.send('start');
} else {
console.log('Child process finish successfully!')
}
});
// send initial message to start the child process.
compute.send('start');

Resources