Why couldn't I intercept segfault signal of a child process? - linux

I'm trying to monitor the child process for segment fault errors, but that doesn't work.
I always receive ABRT signal.
I see gdb can catch segment fault, so what's wrong with my code?
pid_t child;
int wstatus, signum;
struct user_regs_struct regs;
child = fork();
if (child == 0)
{
ptrace(PTRACE_TRACEME, 0, NULL, NULL);
char buf[10];
// make it always crash
strcpy (buf, "aaaaaaabbbbbbbbbbbaaaaaaaaaaaaaaaa");
printf ("Buf is %s\n", buf);
exit(0);
}
while(1)
{
wait(&wstatus);
if (WIFEXITED(wstatus) || WIFSIGNALED(wstatus))
break;
signum = WSTOPSIG(wstatus);
ptrace(PTRACE_GETREGS, child, NULL, &regs);
printf ("signal: %d, eip: 0x%08lx\n", signum, regs.eip);
ptrace(PTRACE_CONT, child, NULL, signum);
}

what's wrong with my code
Your code breaks out of the loop when child is signalled (WIFSIGNALED). Since you are expecting to catch a signal (most likely SIGSEGV), perhaps you shouldn't break out of the loop when the child is signalled?
I've looked at your code some more. It is not clear why your child is crashing at all. Perhaps you are building it with -fstack-protector or some such?
Here is a complete compilable test case (which you should have put into your question), that does crash (note: removed exit from child):
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <wait.h>
#include <sys/ptrace.h>
#include <sys/user.h>
int main()
{
pid_t child;
int wstatus, signum;
struct user_regs_struct regs;
child = fork();
if (child == 0)
{
ptrace(PTRACE_TRACEME, 0, NULL, NULL);
char buf[10];
// make it always crash
strcpy (buf, "aaaaaaabbbbbbbbbbbaaaaaaaaaaaaaaaa");
printf ("Buf is %s\n", buf);
}
while(1)
{
wait(&wstatus);
if (WIFEXITED(wstatus))
break;
signum = WSTOPSIG(wstatus);
ptrace(PTRACE_GETREGS, child, NULL, &regs);
printf ("signal: %d, eip: 0x%08lx\n", signum, regs.eip);
ptrace(PTRACE_CONT, child, NULL, signum);
}
return wstatus;
}
And got infinite loop
You normally should get an infinite loop: you are resuming the child, which re-executes its current instruction, which should trigger the exact same signal again.
That's not what is happening with the above program on my system though, and I currently can't explain what I am observing:
$ ./a.out
Buf is aaaaaaabbbbbbbbbbbaaaaaaaaaaaaaaaa
signal: 159, eip: 0x08049ff4
signal: 159, eip: 0x08049ff4
...
signal: 159, eip: 0x08049ff4
*** stack smashing detected ***: ./a.out terminated
signal: 11, eip: 0xf759fb19
signal: 0, eip: 0xf759fb19
signal: 0, eip: 0xf759fb19
...

Related

How to set the LD_PRELOAD environment variable for a ptrace child

I'm trying to load a pre-load library to the ptrace child process using environment variables. But somehow I got an error when creating the child process:
int main(int argc, char **argv)
{
char *env[] = {"LD_PRELOAD=/<path-to-the-preload-library>/preload.so"};
pid_t pid = fork();
switch (pid) {
case -1: /* error */
log_fatal("%s. pid -1", strerror(errno));
break;
case 0: /* child, executing the tracee */
ptrace(PTRACE_TRACEME, 0, 0, 0);
execve(argv[1], argv + 1, env); // Fail to launch ptrace child!
//execvp(argv[1], argv + 1); // It works fine!
log_fatal("%s. child", strerror(errno));
}
waitpid(pid, 0, 0); // sync with PTRACE_TRACEME
ptrace(PTRACE_SETOPTIONS, pid, 0, PTRACE_O_EXITKILL);
The simple preloaded library code:
$ cat preload.c
#include <stdio.h>
static void _init() __attribute__((constructor));
void _init() {
printf("I'm a constructor\n");
}
Any idea why it fails?
It'd be nice if you told us what the error message was, but I think I can guess: "Bad address"?
The env vector passed to execve needs to be terminated with a NULL pointer, just like the argv vector. So you want
char *env[] = {"LD_PRELOAD=/<path-to-the-preload-library>/preload.so", NULL};

Ptrace prevents signal from interrupting pselect() in traced process

I'm trying to monitor syscalls for a binary using ptrace. The binary sleeps in pselect() and without ptrace, a SIGQUIT makes it return from pselect. The mask of blocked signals passed to pselect includes SIGQUIT.
When executed with ptrace, it exits from sys_pselect6 but not all the way out of glibc's pselect. What am I doing that prevents sys_pselect6 from exiting out to user code ?
Tracer:
#include <stdio.h>
#include <sys/ptrace.h>
#include <sys/reg.h>
#include <err.h>
#include <wait.h>
#include <unistd.h>
int main(int argc, char *argv[])
{
int pid = fork(), sys_in = 1, status;
if (pid == 0) {
if (ptrace(PTRACE_TRACEME, getppid(), NULL, NULL) < 0)
err(1, "TRACEME()");
execl("./child", "./child", NULL);
err(1, "execl()");
}
if (waitpid(pid, &status, 0) != pid) err(1, "wait()");
for (;; sys_in ^= 1) {
if (ptrace(PTRACE_SYSCALL, pid, NULL, NULL) < 0) err(1, "SYSCALL");
if (waitpid(pid, &status, 0) != pid) err(1, "wait()");
if (sys_in) {
long long sys_no = ptrace(PTRACE_PEEKUSER, pid, 8 * ORIG_RAX, NULL);
printf("syscall entry %lld\n", sys_no);
}
else printf("syscall exit\n");
}
return 0;
}
Child:
#include <stdio.h>
#include <sys/select.h>
#include <signal.h>
#include <err.h>
void handle_sigquit(int sig, siginfo_t* info, void *ctx)
{
}
int main()
{
sigset_t mask;
sigset_t orig_mask;
struct sigaction sa = {};
sa.sa_flags = SA_SIGINFO;
sa.sa_sigaction = handle_sigquit;
sigaction(SIGQUIT, &sa, NULL);
sigemptyset(&mask);
sigaddset(&mask, SIGQUIT);
if (sigprocmask(SIG_BLOCK, &mask, &orig_mask) < 0) err(1, "sigprocmask()");
pselect(0, NULL, NULL, NULL, NULL, &orig_mask);
warn("pselect()");
return 0;
}
ptrace(PTRACE_SYSCALL, pid, NULL, NULL)
Whenever your debugger gets a notification, you just assume that that notification is about a system call, and handle it accordingly. That is not the case.
Some of the notifications you receive using wait are for signals that your debugee has received. When those happen, the last NULL in your PTRACE_SYSCALL call eliminates, effectively masks, the signal from arriving at the debugee process.
When processing ptrace results, you need to check the signal that caused your debugger to wake up. At the very least, check if it's a SIGTRAP or something else. If it is something else, the best bet is to pass it on to the debugee process.
Check out this small program to see a simple way of doing it.

Linux simulate write() system call failure using ptrace()

I am trying to simulate failure of write() system call.
I have read that return value -1 (in EAX) indicates error in system call and errno gives the exact reason for failure.
I am trying to intercept system call write() return -1 in EAX register and set the "errno" to some error value.
puts() internally uses write(), which is system call number 4.
If i do perror("Error:") in the child, it should show the error corresponding to "errno" which i would like to set.
#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <sys/reg.h> /* For constants ORIG_EAX etc */
#include <stdio.h>
#include <sys/user.h>
#include <errno.h>
int main()
{ pid_t child;
int status;
long orig_eax,eax,params[3];
int ret_val=-1,insyscall=0;
struct user_regs_struct regs;
child = fork();
if(child == 0) {
ptrace(PTRACE_TRACEME, 0, NULL, NULL);
execl("/home/kashi/Documents/2nd_Sem/MyPrgms/ptrace/ramana/write", "write", NULL);
//execl("/bin/ls","ls",NULL);
}
else {
while(1)
{
wait(&status);
if(WIFEXITED(status))
break;
orig_eax = ptrace(PTRACE_PEEKUSER,
child, 4 * ORIG_EAX, NULL);
if(orig_eax == 4)
{
ptrace( PTRACE_GETREGS, child, 0, &regs );
printf("Write called with %ld, %ld %ld\n",regs.ebx, regs.ecx,regs.edx);
if(insyscall == 0)
{
/* Syscall entry */
printf("In %d\n",insyscall);
insyscall = 1;
}
else
{
/* Syscall exit */
regs.orig_eax=-1;
**errno=11; //This errno should be set in the child process, how to do it?**
ptrace( PTRACE_SETREGS, child, 0, &regs );
eax = ptrace(PTRACE_PEEKUSER, child, 4 * ORIG_EAX, NULL);
printf("Write returned with %ld\n", eax);
insyscall = 0;
}
}
//printf("The child made a "
// "system call %ld\n", regs.orig_eax);
ptrace(PTRACE_SYSCALL, child, NULL, NULL);
}
}
return 0;
}
The tracee program (testwrite.c) is:
#include<stdio.h>
#include<unistd.h>
#include<sys/ptrace.h>
#include<signal.h>
#include<errno.h>
//int display(char *p);
int main()
{
printf("Hi Kashi\n");
perror("Error: ");
return 0;
}
output:
[kashi#localhost ramana]$ ./test.sh
In 0
Hi Kashi
Write returned with -1
In 0
**Error: : Success**
Write returned with -1
The perror("Error:") displays text message corresponding to "errno". I am not able to set this "errno" in child process, how can i do it?

How to safely `waitpid()` in a plugin with `SIGCHLD` handler calling `wait()` setup in the main program

I am writing a module for a toolkit which need to execute some sub processes and read their output. However, the main program that uses the toolkit may also spawn some sub processes and set up a signal handler for SIGCHLD which calls wait(NULL) to get rid of zombie processes. As a result, if the subprocess I create exit inside my waitpid(), the child process is handled before the signal handler is called and therefore the wait() in the signal handler will wait for the next process to end (which could take for ever). This behavior is described in the man page of waitpid (See grantee 2) since the linux implementation doesn't seem to allow the wait() family to handle SIGCHLD. I have tried popen() and posix_spawn() and both of them have the same problem. I have also tried to use double fork() so that the direct child exist immediately but I still cannot garentee that waitpid() is called after SIGCHLD is recieved.
My question is, if other part of the program sets up a signal handler which calls wait() (maybe it should rather call waidpid but that is not sth I can control), is there a way to safely execute child processes without overwriting the SIGCHLD handler (since it might do sth useful in some programs) or any zombie processes.
A small program which shows the problem is here (Noted that the main program only exit after the long run child exit, instead of the short one which is what it is directly waiting for with waitpid()):
#include <signal.h>
#include <sys/wait.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
static void
signalHandler(int sig)
{
printf("%s: %d\n", __func__, sig);
int status;
int ret = waitpid(-1, &status, 0);
printf("%s, ret: %d, status: %d\n", __func__, ret, status);
}
int
main()
{
struct sigaction sig_act;
memset(&sig_act, 0, sizeof(sig_act));
sig_act.sa_handler = signalHandler;
sigaction(SIGCHLD, &sig_act, NULL);
if (!fork()) {
sleep(20);
printf("%s: long run child %d exit.\n", __func__, getpid());
_exit(0);
}
pid_t pid = fork();
if (!pid) {
sleep(4);
printf("%s: %d exit.\n", __func__, getpid());
_exit(0);
}
printf("%s: %d -> %d\n", __func__, getpid(), pid);
sleep(1);
printf("%s, start waiting for %d\n", __func__, pid);
int status;
int ret = waitpid(pid, &status, 0);
printf("%s, ret: %d, pid: %d, status: %d\n", __func__, ret, pid, status);
return 0;
}
If the process is single-threaded, you can block the CHLD signal temporarily (using sigprocmask), fork/waitpid, then unblock again.
Do not forget to unblock the signal in the forked child - although POSIX states the signal mask is undefined when a process starts, most existing programs expect it to be completely unset.

ptrace'ing of parent process

Can child process use the ptrace system call to trace its parent?
Os is linux 2.6
Thanks.
upd1:
I want to trace process1 from "itself". It is impossible, so I do fork and try to do ptrace(process1_pid, PTRACE_ATTACH) from child process. But I can't, there is a strange error, like kernel prohibits child from tracing their parent processes
UPD2: such tracing can be prohibited by security policies. Which polices do this? Where is the checking code in the kernel?
UPD3: on my embedded linux I have no errors with PEEKDATA, but not with GETREGS:
child: getregs parent: -1
errno is 1, strerror is Operation not permitted
errno = EPERM
This question really interested me. So I wrote some code to try it out.
Firstly keep in mind, that when tracing a process, the tracing process becomes a parent for most purposes, except in name (i.e. getppid()). Firstly, a snippet of the PTRACE_ATTACH section of the manual is helpful:
PTRACE_ATTACH
Attaches to the process specified in pid, making it a traced
"child" of the calling process; the behavior of the child is as
if it had done a PTRACE_TRACEME. The calling process actually
becomes the parent of the child process for most purposes (e.g.,
it will receive notification of child events and appears in
ps(1) output as the child's parent), but a getppid(2) by the
child will still return the PID of the original parent. The
child is sent a SIGSTOP, but will not necessarily have stopped
by the completion of this call; use wait(2) to wait for the
child to stop. (addr and data are ignored.)
Now here is the code I wrote to test and verify that you can in fact ptrace() your parent (you can build this by dumping it in a file named blah.c and running make blah:
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/ptrace.h>
int main()
{
pid_t pid = fork();
assert(pid != -1);
int status;
long readme = 0;
if (pid)
{
readme = 42;
printf("parent: child pid is %d\n", pid);
assert(pid == wait(&status));
printf("parent: child terminated?\n");
assert(0 == status);
}
else
{
pid_t tracee = getppid();
printf("child: parent pid is %d\n", tracee);
sleep(1); // give parent time to set readme
assert(0 == ptrace(PTRACE_ATTACH, tracee));
assert(tracee == waitpid(tracee, &status, 0));
printf("child: parent should be stopped\n");
printf("child: peeking at parent: %ld\n", ptrace(PTRACE_PEEKDATA, tracee, &readme));
}
return 0;
}
Note that I'm exploiting the replication of the parent's virtual address space to know where to look. Also note that when the child then terminates, I suspect there's an implicit detach which must allow the parent to continue, I didn't investigate further.
Yes it is possible...
Even GETREGS works.
Checked on x86
(based on Matt Joiner code, thanks him)
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/user.h>
int main()
{
pid_t pid = fork();
// assert(pid != -1);
int status;
long readme = 0;
struct user_regs_struct regs;
if (pid)
{
readme = 42;
printf("parent: child pid is %d\n", pid);
assert(pid == wait(&status));
printf("parent: child terminated?\n");
assert(0 == status);
}
else
{
pid_t tracee = getppid();
printf("child: parent pid is %d\n", tracee);
sleep(1); // give parent time to set readme
assert(0 == ptrace(PTRACE_ATTACH, tracee));
assert(tracee == waitpid(tracee, &status, 0));
printf("child: parent should be stopped\n");
printf("child: peeking at parent: %ld\n", ptrace(PTRACE_PEEKDATA, tracee, &readme, NULL));
printf("Regs was %p, %p, %p, %p; &status is %p \n", regs.eax, regs.ebx, regs.ecx, regs.edx, &status);
printf("child: getregs parent: %ld\n", ptrace(PTRACE_GETREGS, tracee, NULL, &regs));
printf("Regs is %p, %p, %p, %p; &status is %p \n", regs.eax, regs.ebx, regs.ecx, regs.edx, &status);
}
return 0;
}
result:
child: parent pid is 1188
parent: child pid is 1189
child: parent should be stopped
child: peeking at parent: 42
Regs was (nil), (nil), (nil), (nil); &status is 0xbfffea50
child: getregs parent: 0
Regs is 0xfffffe00, 0xffffffff, 0xbfffea50, (nil); &status is 0xbfffea50
parent: child terminated?

Resources