Use of PBO and VBO - multithreading

My application (QT/OpenGL) needs to upload, at 25fps, a bunch of videos from IP camaras, and then process it applying:
for each videos, a demosaic filter, sharpening filter, LUT and
distortion docrretion.
Then i need to render in opengl (texture projection, etc..) picking one or more frames processed earlier
Then I need to show the result to some widgets (QGLWidget) and read the pixels to write into a movie file.
I try to understand the pros and cons of PBO and FBO, and i picture the following architecture which i want to validate with your help:
I create One thread per video, to capture in a buffer (array of images). There is one buffer for video.
I create a Upload-filter-render thread which aims to: a) upload the frames to GPU, b) apply the filter into GPU, c) apply the composition and render to a texture
I let the GUI thread to render in my widget the texture created in the previous step.
For the Upload-Frames-to-GPU process, i guess the best way is to use PBO (maybe two PBOS) for each video, to load asynchronously the frames.
For the Apply-Filter-info-GPU, i want to use FBO which seems the best to do render-to-texture. I will first bind the texture uploaded by the PBO, and then render to another texture, the filtered image. I am not sure to use only one FBO and change the binding texture input and binding texture target according the video upload, or use as many FBOS, as videos to upload.
Finally, in order to show the result into a widget, i use the final texture rendered by the FBO. For writing into a movie file, i use PBO to copy back asynchronously the pixels from GPU to CPU.
Does it seem correct?

Related

AVAssetWriter getting raw bytes makes corrupt videos on device (works on sim)

So my goal is to add CVPixelBuffers into my AVAssetWriter / AVAssetWriterInputPixelBufferAdaptor with super high speed. My previous solution used CGContextDrawImage but it is very slow (0.1s) to draw. The reason seems to be with color matching and converting, but that's another question I think.
My current solution is trying to read the bytes of the image directly to skip the draw call. I do this:
CGImageRef cgImageRef = [image CGImage];
CGImageRetain(cgImageRef);
CVPixelBufferRef pixelBuffer = NULL;
CGDataProviderRef dataProvider = CGImageGetDataProvider(cgImageRef);
CGDataProviderRetain(dataProvider);
CFDataRef da = CGDataProviderCopyData(dataProvider);
CVPixelBufferCreateWithBytes(NULL,
CGImageGetWidth(cgImageRef),
CGImageGetHeight(cgImageRef),
kCVPixelFormatType_32BGRA,
(void*)CFDataGetBytePtr(da),
CGImageGetBytesPerRow(cgImageRef),
NULL,
0,
NULL,
&pixelBuffer);
[writerAdaptor appendPixelBuffer:pixelBuffer withPresentationTime:presentTime];
-- releases here --
This works fine on my simulator and inside an app. But when I run the code inside the SpringBoard process, it comes out as the images below. Running it outside the sandbox is a requirement, it is meant for jailbroken devices.
I have tried to play around with e.g. pixel format styles but it mostly comes out with differently corrupted images.
The proper image/video file looks fine:
But this is what I get in the broken state:
Answering my own question as I think I got the answer(s). The resolution difference was a simple code error, not using the device bounds on the latter ones.
The color issues. In short, the CGImages I got when running outside of the sandbox was using more bytes per pixel, 8 bytes. The images I get when running inside the sandbox was 4 bytes. So basically I was simply writing the wrong data into the buffer.
So, instead of simply slapping all of the bytes from the larger image into the smaller buffer. I loop through the pixel buffer row-by-row, byte-by-byte and I pick the RGBA values for each pixel. I essentially had to skip every other byte from the source image to get the right data into the right place within the buffer.

Node.js: How do I extract an embedded thumbnail from a jpg without loading the full jpg first?

I'm creating a Raspberry Pi Zero W security camera and am attempting to integrate motion detection using Node.js. Images are being taken with Pi camera module at 8 Megapixels (3280x2464 pixels, roughly 5MB per image).
On a Pi Zero, resources are limited, so loading an entire image from file to Node.js may limit how fast I can capture then evaluate large photographs. Surprisingly, I capture about two 8MB images per second in a background time lapse process and hope to continue to capture the largest sized images roughly once per second at least. One resource that could help with this is extracting the embedded thumbnail from the large image (thumbnail size customizable in raspistill application).
Do you have thoughts on how I could quickly extract the thumbnail from a large image without loading the full image in Node.js? So far I've found a partial answer here. I'm guessing I would manage this through a buffer somehow?

How to update texture for every frame in vulkan?

As my question title says, I want update texture for every frame.
I got an idea :
create a VkImage as a texture buffer with bellow configurations :
initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED
usage= VK_IMAGE_USAGE_SAMPLED_BIT
and it's memory type is VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
In draw loop :
first frame :
map texure data to VkImage(use vkMapMemory).
change VkImage layout from VK_IMAGE_LAYOUT_PREINITIALIZED to VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL.
use this VkImage as texture buffer.
second frame:
The layout will be VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL after the first frame , can I map next texure data to this VkImage directly without change it's layout ? if I can not do that, which layout can I change this VkImage to ?
In vkspec 11.4 it says :
The new layout used in a
transition must not be VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED
So , I can not change layout back to _PREINITIALIZED .
Any help will be appreciated.
For your case you do not need LAYOUT_PREINITIALIZED. That would only complicate your code (forcing you to provide separate code for the first frame).
LAYOUT_PREINITIALIZED is indeed a very special layout intended only for the start of the life of the Image. It is more useful for static textures.
Start with LAYOUT_UNDEFINED and use LAYOUT_GENERAL when you need to write the Image from CPU side.
I propose this scheme:
berfore render loop
Create your VkImage with UNDEFINED
1st to Nth frame (aka render loop)
Transition image to GENERAL
Synchronize (likely with VkFence)
Map the image, write it, unmap it (weell, the mapping and unmaping can perhaps be outside render loop)
Synchronize (potentially done implicitly)
Transition image to whatever layout you need next
Do your rendering and whatnot
start over at 1.
It is a naive implementation but should suffice for ordinary hobbyist uses.
Double buffered access can be implemented — that is e.g. VkBuffer for CPU access and VkImage of the same for GPU access. And VkCmdCopy* must be done for the data hand-off.
It is not that much more complicated than the above approach and there can be some performance benefits (if you need those at your stage of your project). You usually want your resources in device local memory, which often is not also host visible.
It would go something like:
berfore render loop
Create your VkBuffer b with UNDEFINED backed by HOST_VISIBLE memory and map it
Create your VkImage i with UNDEFINED backed by DEVICE_LOCAL memory
Prepare your synchronization primitives between i and b: E.g. two Semaphores, or Events could be used or Barriers if the transfer is in the same queue
1st to Nth frame (aka render loop)
Operations on b and i can be pretty detached (even can be on different queues) so:
For b:
Transition b to GENERAL
Synchronize to CPU (likely waiting on VkFence or vkQueueIdle)
invalidate(if non-coherent), write it, flush(if non-coherent)
Synchronize to GPU (done implicitly if 3. before queue submission)
Transition b to TRANSFER
Synchronize to make sure i is not in use (likely waiting on a VkSemaphore)
Transition i to TRANSFER
Do vkCmdCopy* from b to i
Synchronize to make known I am finished with i (likely signalling a VkSemaphore)
start over at 1.
(The fence at 2. and semaphore at 6. have to be pre-signalled or skipped for first frame to work)
For i:
Synchronize to make sure i is free to use (likely waiting on a VkSemaphore)
Transition i to whatever needed
Do your rendering
Synchronize to make known I am finished with i (likely signalling a VkSemaphore)
start over at 1.
You have a number of problems here.
First:
create a VkImage as a texture buffer
There's no such thing. The equivalent of an OpenGL buffer texture is a Vulkan buffer view. This does not use a VkImage of any sort. VkBufferViews do not have an image layout.
Second, assuming that you are working with a VkImage of some sort, you have recognized the layout problem. You cannot modify the memory behind the texture unless the texture is in the GENERAL layout (among other things). So you have to force a transition to that, wait until the transition command has actually completed execution, then do your modifications.
Third, Vulkan is asynchronous in its execution, and unlike OpenGL, it will not hide this from you. The image in question may still be accessed by the shader when you want to change it. So usually, you need to double buffer these things.
On frame 1, you set the data for image 1, then render with it. On frame 2, you set the data for image 2, then render with it. On frame 3, you overwrite the data for image 1 (using events to ensure that the GPU has actually finished frame 1).
Alternatively, you can use double-buffering without possible CPU waiting, by using staging buffers. That is, instead of writing to images directly, you write to host-visible memory. Then you use a vkCmdCopyBufferToImage command to copy that data into the image. This way, the CPU doesn't have to wait on events or fences to make sure that the image is in the GENERAL layout before sending data.
And BTW, Vulkan is not OpenGL. Mapping of memory is always persistent; there's no reason to unmap a piece of memory if you're going to map it every frame.

OpenGL (ES): Efficiently get vertex data from texture

I have an OpenGL texture that I generate through a couple of render passes in my FBO.
Now I want to use the texture as vertex data in a VBO and render stuff with it.
Since all data is GPU-sided, is there an efficient way to transfer (or re-interpret) texture data as vertex data in OpenGL?
Or do I have to go all the way through the CPU with
// ... generate texture on GPU.
glReadBuffer(..where the texture is..);
glReadPixels(..., mainMemoryBuffer);
glBufferSubData(GL_ARRAY_BUFFER, ..., mainMemoryBuffer);
? Or is there another way to achieve what I want?
Ok. After some more research it seems that PBOs (Pixel Buffer Objects) are the OpenGL feature which enable this:
glBindBuffer(GL_PIXEL_PACK_BUFFER, myVbo);
glReadPixels(..., 0);
Unfortunately it seems they are unavailable on OpenGL ES (see this thread on GameDevelopment).

Texture Buffer for OpenGL Video Player

I am using OpenGL, Ffmpeg and SDL to play videos and am currently optimizing the process of getting frames, decoding them, converting them from YUV to RGB, uploading them to texture and displaying the texture on a quad. Each of these stages is performed by a seperate thread and they written to shared buffers which are controlled by SDL mutexes and conditions (except for the upload and display of the textures as they need to be in the same context).
I have the player working fine with the decode, convert and OpenGL context on seperate threads but realised that because the video is 25 frames per second, I only get a converted frame from the buffer, upload it to OpenGL and bind it/display it every 40 milliseconds in the OpenGL thread. The render loop goes round about 6-10 times not showing the next frame for every frame it shows, due to this 40ms gap.
Therefore I decided it might be a good idea to have a buffer for the textures too and set up an array of textures created and initialised with glGenTextures() and the glParameters I needed etc.
When it hasn't been 40ms since the last frame refresh, a method is ran which grabs the next converted frame from the convert buffer and uploads it to the next free texture in the texture buffer by binding it then calling glTexSubImage2D(). When it has been 40ms since the last frame refresh, a seperate method is ran which grabs the next GLuint texture from the texture buffer and binds it with glBindTexture(). So effectively, I am just splitting up what was being done before (grab from convert buffer, upload, display) into seperate methods (grab from convert buffer, upload to texture buffer | and | grab from texture buffer, display) to make use of the wasted time between 40ms refreshes.
Does this sound reasonable? Because when ran, the video halts all the time in a sporadic manner, sometimes about 4 frames are played when they are supposed to (every 40ms) but then there is a 2 second gap, then 1 frame is shown, then a 3 second gap and the video is totally unwatchable.
The code is near identical to how I manage the convert thread grabbing decoded frames from the decode buffer, converting them from YUV to RGB and then putting them into the convert buffer so can't see where the massive bottlenecking could be.
Could the bottlenecking be on the OpenGL side of things? Is the fact that I am storing new image data to 10 different textures the problem as when a new texture is grabbed from the texture buffer, the raw data could be a million miles away from the last one in terms of memory location on the video memory? That's my only attempt at an answer, but I don't know much about how OpenGL works internally so that's why I am posting here.
Anybody have any ideas?
I'm no OpenGL expert, but my guess of the bottleneck is that the textures are intialized properly in system memory but are sent to the video memory at the 'wrong' time (like all at once instead of as soon as possible), stalling the pipeline. When using glTexSubImage2D you have no guarantees about when a texture arrives in video memory until you bind it.
Googling around it seems pixelbuffer objects give you more control about when they are in video memory: http://www.opengl.org/discussion_boards/ubbthreads.php?ubb=showflat&Number=262523

Resources