I need to build a text editor as my mini project, and I need to design a data structure or algorithm that supports following operation:
Append : Append a character at the end of the String.
Prepend : Prepend a character at the beginning of the string.
Search : Given a search string s, find all the occurrences of the string.
Each operation in O(log n) time or less. Search and replace operations will be appreciable but not necessary. The maximum length of string is constant. Any ideas how to achieve this?
Thanks!
A common data structure for this kind of application is a Rope, where Append and Prepend are O(1), although that depends a bit on whether the tree is balanced. However, as noted by Толя, Search would be linear.
There are certainly data structures that can make the search faster, such as a Suffix Tree, but they are probably not appropriate for a text editor application.
I would propose you adapt a Trie. On an append operation add all the suffixes of the string ending at the new character with length up to the maximum length of the string in the datastructure. On prepend add all the prefixes of the string starting at the new char with length up to the fixed length of the string. Asymptotically both operations are constant - they take O(k^2) where k is the fixed length of the string. For each node in the structure keep track of all the strings ending at that node(possibly a list).
A search operation will again be constant: iterate over the string and output all indexes stored in the ending node(if you have not "dropped out the tree").
A drawback of my approach is the memory overhead(at most times the maximum length of a word), but if the maximum string length allowed is reasonable and you only insert real words(from English dictionary for instance), this should not be a big problem.
Related
I have a ternary search tree that contain all the suffixes of a word. What is the time complexity for construction and searching a word in this structure?
Example:
a word banana$, have the suffix banana$,anana$,nana$,ana$,na$,a$,$
and in lexicografical order $,a$,ana$,anana$,banana$,na$,nana$.
inserting all suffix in the ternary search tree in balanced form is:
anana$,a$,$,ana$,na$,banana$,nana$.
Generally speaking, the time required to insert something into a TST is O(L log |Σ|), where L is the length of the string and Σ is the set of allowed characters in your string. The reason for this is that adding each individual character takes time O(log |Σ|) because you're adding each character into a BST of at most |Σ| elements. For the example you're describing, you're adding in strings of length 1, 2, 3, ..., n, so the runtime is O(n2 log |Σ|).
That said, I think you can speed this up by going through a more indirect route. A ternary search tree can be thought of as a trie where the child pointers of each node are stored in a binary search tree. If you just want a trie of all the suffixes, you might want to look at suffix trees, which are specifically designed to represent that information. They can be built in time O(n) for a length-n string.
I've been given a problem in my data structures class to find the solution to this problem. It's similar to an interview question. If someone could explain the thinking process or solution to the problem. Pseudocode can be used. So far i've been thinking to use tries to hold the dictionary and look up words that way for efficiency.
This is the problem:
Oh, no! You have just completed a lengthy document when you have an unfortunate Find/Replace mishap. You have accidentally removed all spaces, punctuation, and capitalization in the document. A sentence like "I reset the computer. It still didn't boot!" would become "iresetthecomputeritstilldidntboot". You figure that you can add back in the punctation and capitalization later, once you get the individual words properly separated. Most of the words will be in a dictionary, but some strings, like proper names, will not.
Given a dictionary (a list of words), design an algorithm to find the optimal way of "unconcatenating" a sequence of words. In this case, "optimal" is defined to be the parsing which minimizes the number of unrecognized sequences of characters.
For example, the string "jesslookedjustliketimherbrother" would be optimally parsed as "JESS looked just like TIM her brother". This parsing has seven unrecognized characters, which we have capitalized for clarity.
For each index, n, into the string, compute the cost C(n) of the optimal solution (ie: the number of unrecognised characters in the optimal parsing) starting at that index.
Then, the solution to your problem is C(0).
There's a recurrence relation for C. At each n, either you match a word of i characters, or you skip over character n, incurring a cost of 1, and then parse the rest optimally. You just need to find which of those choices incurs the lowest cost.
Let N be the length of the string, and let W(n) be a set containing the lengths of all words starting at index n in your string. Then:
C(N) = 0
C(n) = min({C(n+1) + 1} union {C(n+i) for i in W(n)})
This can be implemented using dynamic programming by constructing a table of C(n) starting from the end backwards.
If the length of the longest word in your dictionary is L, then the algorithm runs in O(NL) time in the worst case and can be implemented to use O(L) memory if you're careful.
You could use rolling hashes of different lengths to speed up the search.
You can try a partial pattern matcher for example aho-corasick algorithm. Basically it's a special space optimized version of a suffix tree.
I take a input from the user and its a string with a certain substring which repeats itself all through the string. I need to output the substring or its length AKA period.
Say
S1 = AAAA // substring is A
S2 = ABAB // Substring is AB
S3 = ABCAB // Substring is ABC
S4 = EFIEFI // Substring is EFI
I could start with a Single char and check if it is same as its next character if it is not, I could do it with two characters then with three and so on. This would be a O(N^2) algo. I was wondering if there is a more elegant solution to this.
You can do this in linear time and constant additional space by inductively computing the period of each prefix of the string. I can't recall the details (there are several things to get right), but you can find them in Section 13.6 of "Text algorithms" by Crochemore and Rytter under function Per(x).
Let me assume that the length of the string n is at least twice greater than the period p.
Algorithm
Let m = 1, and S the whole string
Take m = m*2
Find the next occurrence of the substring S[:m]
Let k be the start of the next occurrence
Check if S[:k] is the period
if not go to 2.
Example
Suppose we have a string
CDCDFBFCDCDFDFCDCDFBFCDCDFDFCDC
For each power m of 2 we find repetitions of first 2^m characters. Then we extend this sequence to it's second occurrence. Let's start with 2^1 so CD.
CDCDFBFCDCDFDFCDCDFBFCDCDFDFCDC
CDCD CDCD CDCD CDCD CD
We don't extend CD since the next occurrence is just after that. However CD is not the substring we are looking for so let's take the next power: 2^2 = 4 and substring CDCD.
CDCDFBFCDCDFDFCDCDFBFCDCDFDFCDC
CDCD CDCD
Now let's extend our string to the first repetition. We get
CDCDFBF
we check if this is periodic. It is not so we go further. We try 2^3 = 8, so CDCDFBFC
CDCDFBFCDCDFDFCDCDFBFCDCDFDFCDC
CDCDFBFC CDCDFBFC
we try to extend and we get
CDCDFBFCDCDFDF
and this indeed is our period.
I expect this to work in O(n log n) with some KMP-like algorithm for checking where a given string appears. Note that some edge cases still should be worked out here.
Intuitively this should work, but my intuition failed once on this problem already so please correct me if I'm wrong. I will try to figure out a proof.
A very nice problem though.
You can build a suffix tree for the entire string in linear time (suffix tree is easy to look up online), and then recursively compute and store the number of suffix tree leaves (occurences of the suffix prefix) N(v) below each internal node v of the suffix tree. Also recursively compute and store the length of each suffix prefix L(v) at each node of the tree. Then, at an internal node v in the tree, the suffix prefix encoded at v is a repeating subsequence that generates your string if N(v) equals the total length of the string divided by L(v).
We can actually optimise the time complexity by creating a Z Array. We can create Z array in O(n) time and O(n) space. Now, lets say if there is string
S1 = abababab
For this the z array would like
z[]={8,0,6,0,4,0,2,0};
In order to calcutate the period we can iterate over the z array and
use the condition, where i+z[i]=S1.length. Then, that i would be the period.
Well if every character in the input string is part of the repeating substring, then all you have to do is store first character and compare it with rest of the string's characters one by one. If you find a match, string until to matched one is your repeating string.
I too have been looking for the time-space-optimal solution to this problem. The accepted answer by tmyklebu essentially seems to be it, but I would like to offer some explanation of what it's actually about and some further findings.
First, this question by me proposes a seemingly promising but incorrect solution, with notes on why it's incorrect: Is this algorithm correct for finding period of a string?
In general, the problem "find the period" is equivalent to "find the pattern within itself" (in some sense, "strstr(x+1,x)"), but with no constraints matching past its end. This means that you can find the period by taking any left-to-right string matching algorith, and applying it to itself, considering a partial match that hits the end of the haystack/text as a match, and the time and space requirements are the same as those of whatever string matching algorithm you use.
The approach cited in tmyklebu's answer is essentially applying this principle to String Matching on Ordered Alphabets, also explained here. Another time-space-optimal solution should be possible using the GS algorithm.
The fairly well-known and simple Two Way algorithm (also explained here) unfortunately is not a solution because it's not left-to-right. In particular, the advancement after a mismatch in the left factor depends on the right factor having been a match, and the impossibility of another match misaligned with the right factor modulo the right factor's period. When searching for the pattern within itself and disregarding anything past the end, we can't conclude anything about how soon the next right-factor match could occur (part or all of the right factor may have shifted past the end of the pattern), and therefore a shift that preserves linear time cannot be made.
Of course, if working space is available, a number of other algorithms may be used. KMP is linear-time with O(n) space, and it may be possible to adapt it to something still reasonably efficient with only logarithmic space.
A string "abab" could be thought of as a pattern of indexed symbols "0101". And a string "bcbc" would also be represented by "0101". That's pretty nifty and makes for powerful comparisons, but it quickly falls apart out of perfect cases.
"babcbc" would be "010202". If I wanted to note that it contains a pattern equal to "0101" (the bcbc part), I can only think of doing some sort of normalization process at each index to "re-represent" the substring from n to length symbolically for comparison. And that gets complicated if I'm trying to see if "babcbc" and "dababd" (010202 vs 012120) have anything in common. So inefficient!
How could this be done efficiently, taking care of all possible nested cases? Note that I'm looking for similar patterns, not similar sub-strings in the actual text.
Try replacing each character with min(K, distance back to previous occurrence of that character), where K is a tunable constant so babcbc and dababd become something like KK2K22 and KKK225. You could use a suffix tree or suffix array to find repeats in the transformed text.
You're algorithm has loss of information from compressing the string's original data set so I'm not sure you can recover the full information set without doing far more work than comparing the original string. Also while your data set appears easier for human readability, it current takes up as much space as the original string and a difference map of the string (where the values are the distance between the prior character and current character) may have a more comparable information set.
However, as to how you can detect all common subsets you should look at Least Common Subsequence algorithms to find the largest matching pattern. It is a well defined algorithm and is efficient -- O(n * m), where n and m are the lengths of the strings. See LCS on SO and Wikipedia. If you also want to see patterns which wrap around a string (as a circular stirng -- where abeab and eabab should match) then you'll need a ciruclar LCS which is described in a paper by Andy Nguyen.
You'll need to change the algorithm slightly to account for number of variations so far. My advise would be to add two additional dimensions to the LCS table representing the number of unique numbers encountered in the past k characters of both original strings along with you're compressed version of each string. Then you could do an LCS solve where you are always moving in the direction which matches on your compressed strings AND matching the same number of unique characters in both strings for the past k characters. This should encode all possible unique substring matches.
The tricky part will be always choosing the direction which maximizes the k which contains the same number of unique characters. Thus at each element of the LCS table you'll have an additional string search for the best step of k value. Since a longer sequence always contains all possible smaller sequences, if you maximize you're k choice during each step you know that the best k on the next iteration is at most 1 step away, so once the 4D table is filled out it should be solvable in a similar fashion to the original LCS table. Note that because you have a 4D table the logic does get more complicated, but if you read how LCS works you'll be able to see how you can define consistent rules for moving towards the upper left corner at each step. Thus the LCS algorithm stays the same, just scaled to more dimensions.
This solution is quite complicated once it's complete, so you may want to rethink what you're trying to achieve/if this pattern encodes the information you actually want before you start writing such an algorithm.
Here goes a solution that uses Prolog's unification capabilities and attributed variables to match templates:
:-dynamic pattern_i/3.
test:-
retractall(pattern_i(_,_,_)),
add_pattern(abab),
add_pattern(bcbc),
add_pattern(babcbc),
add_pattern(dababd),
show_similarities.
show_similarities:-
call(pattern_i(Word, Pattern, Maps)),
match_pattern(Word, Pattern, Maps),
fail.
show_similarities.
match_pattern(Word, Pattern, Maps):-
all_dif(Maps), % all variables should be unique
call(pattern_i(MWord, MPattern, MMaps)),
Word\=MWord,
all_dif(MMaps),
append([_, Pattern, _], MPattern), % Matches patterns
writeln(words(Word, MWord)),
write('mapping: '),
match_pattern1(Maps, MMaps). % Prints mappings
match_pattern1([], _):-
nl,nl.
match_pattern1([Char-Char|Maps], MMaps):-
select(MChar-Char, MMaps, NMMaps),
write(Char), write('='), write(MChar), write(' '),
!,
match_pattern1(Maps, NMMaps).
add_pattern(Word):-
word_to_pattern(Word, Pattern, Maps),
assertz(pattern_i(Word, Pattern, Maps)).
word_to_pattern(Word, Pattern, Maps):-
atom_chars(Word, Chars),
chars_to_pattern(Chars, [], Pattern, Maps).
chars_to_pattern([], Maps, [], RMaps):-
reverse(Maps, RMaps).
chars_to_pattern([Char|Tail], Maps, [PChar|Pattern], NMaps):-
member(Char-PChar, Maps),
!,
chars_to_pattern(Tail, Maps, Pattern, NMaps).
chars_to_pattern([Char|Tail], Maps, [PChar|Pattern], NMaps):-
chars_to_pattern(Tail, [Char-PChar|Maps], Pattern, NMaps).
all_dif([]).
all_dif([_-Var|Maps]):-
all_dif(Var, Maps),
all_dif(Maps).
all_dif(_, []).
all_dif(Var, [_-MVar|Maps]):-
dif(Var, MVar),
all_dif(Var, Maps).
The idea of the algorithm is:
For each word generate a list of unbound variables, where we use the same variable for the same char in the word. e.g: for the word abcbc the list would look something like [X,Y,Z,Y,Z]. This defines the template for this word
Once we have the list of templates we take each one and try to unify the template with a subtemplate of every other word. So for example if we have the words abcbc and zxzx, the templates would be [X,Y,Z,Y,Z] and [H,G,H,G]. Then there is a subtemplate on the first template which unifies with the template of the second word (H=Y, G=Z)
For each template match we show the substitutions needed (variable renamings) to yield that match. So in our example the substitutions would be z=b, x=c
Output for test (words abab, bcbc, babcbc, dababd):
?- test.
words(abab,bcbc)
mapping: a=b b=c
words(abab,babcbc)
mapping: a=b b=c
words(abab,dababd)
mapping: a=a b=b
words(bcbc,abab)
mapping: b=a c=b
words(bcbc,babcbc)
mapping: b=b c=c
words(bcbc,dababd)
mapping: b=a c=b
You are given a string. Develop a function to remove duplicate characters from that string. String could be of any length. Your algorithm must be in space. If you wish you can use constant size extra space which is not dependent any how on string size. Your algorithm must be of complexity of O(n).
My idea was to define an integer array of size of 26 where 0th index would correspond to the letter a and the 25th index for the letter z and initialize all the elements to 0.
Thus we will travel the entire string once and and would increment the value at the desired index as and when we encounter a letter.
and then we will travel the string once again and if the value at the desired index is 1 we print out the letter otherwise we do not.
In this way the time complexity is O(n) and the space used is constant irrespective of the length of the string!!
if anyone can come up with ideas of better efficiency,it will be very helpful!!
Your solution definitely fits the criteria of O(n) time. Instead of an array, which would be very, very large if the allowed alphabet is large (Unicode has over a million characters), you could use a plain hash. Here is your algorithm in (unoptimized!) Ruby:
def undup(s)
seen = Hash.new(0)
s.each_char {|c| seen[c] += 1}
result = ""
s.each_char {|c| result << c if seen[c] == 1}
result
end
puts(undup "")
puts(undup "abc")
puts(undup "Olé")
puts(undup "asdasjhdfasjhdfasbfdasdfaghsfdahgsdfahgsdfhgt")
It makes two passes through the string, and since hash lookup is less than linear, you're good.
You can say the Hashtable (like your array) uses constant space, albeit large, because it is bounded above by the size of the alphabet. Even if the size of the alphabet is larger than that of the string, it still counts as constant space.
There are many variations to this problem, many of which are fun. To do it truly in place, you can sort first; this gives O(n log n). There are variations on merge sort where you ignore dups during the merge. In fact, this "no external hashtable" restriction appears in Algorithm: efficient way to remove duplicate integers from an array (also tagged interview question).
Another common interview question starts with a simple string, then they say, okay now a million character string, okay now a string with 100 billion characters, and so on. Things get very interesting when you start considering Big Data.
Anyway, your idea is pretty good. It can generally be tweaked as follows: Use a set, not a dictionary. Go trough the string. For each character, if it is not in the set, add it. If it is, delete it. Sets take up less space, don't need counters, and can be implemented as bitsets if the alphabet is small, and this algorithm does not need two passes.
Python implementation: http://code.activestate.com/recipes/52560-remove-duplicates-from-a-sequence/
You can also use a bitset instead of the additional array to keep track of found chars. Depending on which characters (a-z or more) are allowed you size the bitset accordingly. This requires less space than an integer array.