I'm basically building a shared library based on the serialisation example in the ASIO documentation, by this I mean I am compiling with the -shared and -fpic options to produce an .so file, which includes hooks/wrappers.
I'm running my shared library against another process and then my code gets run through the constructor function within the library (like DLLMain on Windows).
I know my code is being executed and it runs fine up until a certain point. Basically my problem involves trying to put ASIO and my networking code onto another thread. I'm using the following code to do that:
asio::io_service io_service;
server server(io_service, port);
asio::thread t(boost::bind(&asio::io_service::run, &io_service));
Now, as this code is run within a constructor function within the library, is throws a seg fault and I can't figure out why. If I replace it with:
asio::io_service io_service;
server server(io_service, port);
io_service.run();
The code runs 100% fine, except it steals the whole thread of execution and the hooked process won't run at all. Can anyone help me out here? I'm really confused.
Cheers
It looks like a lifetime issue.
If the following code is in a function within the library:
void some_function()
{
asio::io_service io_service;
server server(io_service, port);
asio::thread t(boost::bind(&asio::io_service::run, &io_service));
}
Then whenever the function returns, io_service will go out of scope, being destroyed while the newly spawned thread is trying to process the event loop. Consider changing it so that the lifetime of io_service and server extends to at least the duration of the thread:
void server_run()
{
asio::io_service io_service;
server server(io_service, port);
io_service.run();
}
...
asio::thread t(&server_run);
Related
I have an Android app that uses NDK - a regular Android Java app with regular UI and C++ core. There are places in the core where I need to call Java methods, which means I need a JNIEnv* for that thread, which in turn means that I need to call JavaVM->AttachCurrentThread() to get the valid env.
Previously, was just doing AttachCurrentThread and didn't bother to detach at all. It worked fine in Dalvik, but ART aborts the application as soon as a thread that has called AttachCurrentThread exits without calling DetachCurrentThread. So I've read the JNI reference, and indeed it says that I must call DetachCurrentThread. But when I do that, ART aborts the app with the following message:
attempting to detach while still running code
What's the problem here, and how to call DetachCurrentThread properly?
Dalvik will also abort if the thread exits without detaching. This is implemented through a pthread key -- see threadExitCheck() in Thread.cpp.
A thread may not detach unless its call stack is empty. The reasoning behind this is to ensure that any resources like monitor locks (i.e. synchronized statements) are properly released as the stack unwinds.
The second and subsequent attach calls are, as defined by the spec, low-cost no-ops. There's no reference counting, so detach always detaches, no matter how many attaches have happened. One solution is to add your own reference-counted wrapper.
Another approach is to attach and detach every time. This is used by the app framework on certain callbacks. This wasn't so much a deliberate choice as a side-effect of wrapping Java sources around code developed primarily in C++, and trying to shoe-horn the functionality in. If you look at SurfaceTexture.cpp, particularly JNISurfaceTextureContext::onFrameAvailable(), you can see that when SurfaceTexture needs to invoke a Java-language callback function, it will attach the thread, invoke the callback, and then if the thread was just attached it will immediately detach it. The "needsDetach" flag is set by calling GetEnv to see if the thread was previously attached.
This isn't a great thing performance-wise, as each attach needs to allocate a Thread object and do some internal VM housekeeping, but it does yield the correct behavior.
I'll try a direct and practical approach (with sample code, without use of classes) answering this question for the occasional developer that came up with this error in android, in cases where they had it working and after a OS or framework update (Qt?) it started to give problems with that error and message.
JNIEXPORT void Java_com_package_class_function(JNIEnv* env.... {
JavaVM* jvm;
env->GetJavaVM(&jvm);
JNIEnv* myNewEnv; // as the code to run might be in a different thread (connections to signals for example) we will have a 'new one'
JavaVMAttachArgs jvmArgs;
jvmArgs.version = JNI_VERSION_1_6;
int attachedHere = 0; // know if detaching at the end is necessary
jint res = jvm->GetEnv((void**)&myNewEnv, JNI_VERSION_1_6); // checks if current env needs attaching or it is already attached
if (JNI_EDETACHED == res) {
// Supported but not attached yet, needs to call AttachCurrentThread
res = jvm->AttachCurrentThread(reinterpret_cast<JNIEnv **>(&myNewEnv), &jvmArgs);
if (JNI_OK == res) {
attachedHere = 1;
} else {
// Failed to attach, cancel
return;
}
} else if (JNI_OK == res) {
// Current thread already attached, do not attach 'again' (just to save the attachedHere flag)
// We make sure to keep attachedHere = 0
} else {
// JNI_EVERSION, specified version is not supported cancel this..
return;
}
// Execute code using myNewEnv
// ...
if (attachedHere) { // Key check
jvm->DetachCurrentThread(); // Done only when attachment was done here
}
}
Everything made sense after seeing the The Invocation API docs for GetEnv:
RETURNS:
If the current thread is not attached to the VM, sets *env to NULL, and returns JNI_EDETACHED. If the specified version is not supported, sets *env to NULL, and returns JNI_EVERSION. Otherwise, sets *env to the appropriate interface, and returns JNI_OK.
Credits to:
- This question Getting error "attempting to detach while still running code" when calling JavaVm->DetachCurrentThread that in its example made it clear that it was necessary to double check every time (even though before calling detach it doesn't do it).
- #Michael that in this question comments he notes it clearly about not calling detach.
- What #fadden said: "There's no reference counting, so detach always detaches, no matter how many attaches have happened."
If I compile and run the code as-is, the process will run with 1 thread. If I uncomment the commented out section and then compile and run it, it runs with 2 threads.
I am compiling the code with this command:
g++ pkg-config gtkmm-2.4 --cflags --libs test.cpp
When the program is running I can check how many threads are created with:
ps -mC a.out
If I look at the second thread in ddd, I can see that it is running g_main_loop_run. This confuses me:
What is the purpose of this thread?
Why does adding a toolbar button create a new thread?
I thought g_main_loop_run() should only ever run in one thread (unless you use the GDK_THREADS_ENTER/GDK_THREADS_LEAVE macros). Since I am running Gtk::Main::Run() in my main thread am breaking the rules?
Thanks in advance for any help. It's driving me crazy.
#include <gtkmm.h>
bool OnDeleteEvent(GdkEventAny* PtrGdkEventAny)
{
Gtk::Main::quit();
return(true);
}
void OnExecuteButtonClicked()
{
}
int main(int argc, char *argv[])
{
new Gtk::Main(0, NULL);
Gtk::Window *ptrWindow = new Gtk::Window;
ptrWindow->signal_delete_event().connect(sigc::ptr_fun(&OnDeleteEvent));
/*
Gtk::Toolbar *ptrToolBar = manage(new Gtk::Toolbar);
Gtk::ToolButton *ptrToolButton;
ptrToolButton = manage( new Gtk::ToolButton(Gtk::Stock::EXECUTE));
ptrToolBar->append(*ptrToolButton, sigc::ptr_fun(&OnExecuteButtonClicked));
ptrWindow->add(*ptrToolBar);
*/
ptrWindow->show_all();
Gtk::Main::run();
return (0);
}
Sometimes GThreads are created when you use functions that rely on async behaviour. These usually create a GTask internally (with g_task_run_in_thread and friends) and run the synchronous version in a seperate thread (except for those being nativly async or async-able, those usually won't spawn another thread). Usually this is IO (i.e. GtkBuilder), Socket and IPC (dbus) related - so mostly glib stuff.
There might also be occasions which I am not aware of, that will spawn additional threads, the mainloop itself is strictly single threaded.
So in your case I can only think of two thing that could trigger this: The Stock image that is loaded from your local disk or the styling information of your theme.
I'm standing in front of a small (maybe not) problem. I have one function which parses XML file (very big xml ~1Gb) so it takes many time (5-6 mins to finish the func). I don't want to use it in GUI-thread because of known issues (mainwindow freezes and nothing happened, so user thinks everything goes wrong). I've tried to solve this problem by using
QtConcurrent::run
But one more problem appeared: if user press X (close button in top right corner) main GUI-thread goes down, but child-thread which was generated my QtConcurrent::run continue his work and I can kill him only by task manager.
I've decided to use QThread instead of QtConcurrent::run6 but I don't understand how can I run MainWindow class function:
void MainWindow::parseXML()
I've tried to create smth like this:
class pThread : public QThread
{
Q_OBJECT
private:
void run();
};
void pThread::run(){
MainWindow::parseXML();
}
But when I'm trying to compile it error appears:
cannot call member function 'void MainWindow::parseXML()' without object
Moreover, I don't know if it possible to update GUI-thread through this method (parseXML function changes statusBar)
What should I do?
The recommended ways to work with threads in Qt is not to inherit from QThread class, see the documentation here and you should be able to do it after that.
And yes it is possible to update the mainwindow from the thread, just code the signals and slots for that functionality, into mainwindow class code a slot that updates the progress and into the class that does the work (the xml parsing you need - there is no reason that functionality should be into the mainwindow class anyway) you code the signal that emit the progress and connect it with mainwindow's slot with Qt::QueuedConnection (note that the default auto-connection will become queued if the objects are in separate threads).
Another option is to use start a QRunnable with QThreadPool. you may want to check documentation. Be ware to wait the spawned threads with QThreadPool::waitForDone().
I'm trying to learn Vala so I'm making a small GUI application. My main language before has been C# so things are going pretty well.
However, I've hit the wall now. I need to connect to an external network server (using GIO) which doesn't answer my client immediately. This makes the GUI freeze up while the program is connecting and doing its thing.
In C# I would probably use a BackgroundWorker in this case. I can't seem to find anything like it for Vala though.
Basically, I have a MainWindow.vala where I have hooked up a signal for clicking a certain button to a method that is creating a new instance of ProcessingDialog.vala. This shows a dialog over the MainWindow that I want the user to see while the program is doing the work (connecting to the server, communicating).
What are my alternatives to make this scenario work?
GIO offers async methods, see an async client for example: https://live.gnome.org/Vala/GIONetworkingSample
If you are not aware of async methods in Vala, try looking at the tutorial: https://live.gnome.org/Vala/Tutorial#Asynchronous_Methods
lethalman's answer above probably makes the most sense, an async request is really going to be your best bet if you're doing a network call. In other cases, you can use Vala's built in thread support to accomplish a background task. It looks like soon enough, there will be a better library available, but this is what's stable.
// Create the function to perform the task
public void thread_function() {
stdout.printf("I am doing something!\n");
}
public int main( string[] args ) {
// Create the thread to start that function
unowned Thread<void*> my_thread = Thread.create<void*>(thread_function, true);
// Some time toward the end of your application, reclaim the thread
my_thread.join();
return 1;
}
Remember to compile with the "--thread" option.
I am developing a Windows forms application which connects to a piece of hardware, acquires a lot of data (~1 GSample/sec), processes it, and spits it out to the screen upon a button click. I am now trying to automate the process in a loop that can be started/stopped at any time so I can monitor it whilst tweaking the input to the acquisition hardware. I thinks it's clear that I need to do this on a separate thread, but I'm having a heck of a time trying to do this in c++/cli - I have found a number of good examples using MFC, which is not supported by Express.
Specifically: My task is to press a button which is handled in Form1.h, to call a function in my main file Acquisition.cpp which contains the following code (currently an infinite loop)
void Form1::realTimeUpdate()
{
// live is a boolean variable set by a button on the form
while(live)
{
displayVariance(getVar(getQuadratures(100),nbrSamples));
}
}
I wish to execute this code in a separate thread so that the main program can listen for the user request to stop the operation. Without threading, I currently have to forcefully quit the program (or set it to run a fixed number of times) to stop it.
Is there any suggestions how I might go about running this code on a separate thread?
I've (unsuccessfully) tried a few things already:
Modifying the example given in This Microsoft Example. Problem: requires /clr:oldSyntax option which is incompatible with the other 1300 lines of code in the program.
Trying to do what I'd do in Java (Declare a global thread and start/stop it from any point in the code. Problem: Compiler won't let me declare a global System::Threading.Thread
this beautiful example. Problem: Requires MFC.
Any suggestions would be greatly appreciated!
You can use a BackgroundWorker or a Thread to handle this. You'll need to make sure that the portion of your work that updates the UI is marshaled back to the UI thread, however.
Here is a tutorial on threading in C++/CLI.
For the record, upon Reed's suggestion about using a BackgroundWorker, I sifted through the code at the bottom of this page and modified my code so that:
It created a new backgroundWorker BGWorker in which BGWorker->DoWork() called my realTimeUpdate() function.
A button on the main Form calls either RunWorkerAsync() or CancelAsync() depending on whether or not the process is running (checked by a boolean flag in my main program).
The realTimeUpdate() function is now passed a BackgroundWorker - realTimeUpdate(BackgroundWorker^ worker, DoWorkEventArgs ^ e) After each calculation is complete within the internal loop, it calls worker->ReportProgress(result) function. In the BGWorker->ProgressChanged() function a separate function, upDataUI(int) draws the result on the main form.
Thanks again for the help.