How to execute a for loop over multiple clock cycles? - verilog

The for loop is working properly , but everything is happening in a single clock cycle. How I make it run a single iteration per cycle?
`timescale 1ns/10ps
module multiplier (clock,multiplier,multiplicand,start,done,product);
input [7:0] multiplier ,multiplicand;
input start;
input clock;
output [15:0] product;
output done;
reg [15:0] multiplierF ,multiplicandF;
reg [15:0] productF;
reg doneF;
integer i;
assign product = productF;
assign done = doneF;
task rpa_16;
input [15:0] multiplierF;
inout [15:0] productF;
assign productF = multiplierF + productF;
endtask
always # (posedge clock or posedge start)
begin
if(start)
begin
multiplierF = 0 ;
multiplicandF = 0 ;
productF = 0 ;
doneF = 0 ;
end
else
begin
multiplierF = {8'b0,multiplier};
multiplicandF = {8'b0,multiplicand};
end
end
always #(posedge clk)
begin
if(!doneF)
begin
for (i=0;i<7;i=i+1)
begin
if(multiplicand[i])
begin
rpa_16(multiplierF,productF);
multiplierF = multiplierF << 1;
productF = productF;
end
else
begin
multiplierF = multiplierF << 1;
end
end
doneF = 1;
end
end

I cant paste a picture of the waveform , but I want i to increment after each positive edge . But whats happening is , for loop executes in a single clock cycle and I get the output.
For loops do not imply anything sequential in verilog. If you want a loop that takes 8 clock cycles, then you'll have to rewrite it with an explicit counter variable, perhaps something like this:
always #(posedge clk or negedge reset_)
if(!reset_) begin
multiplierF <= 0;
loopcount <= 0;
doneF <= 0;
end else begin
if(!doneF) begin
loopcount <= loopcount + 1;
if(multiplicand[loopcount]) begin
rpa_16(multiplierF,productF);
multiplierF = multiplierF << 1;
productF = productF;
end else begin
multiplierF = multiplierF << 1;
end
end
if(loopcount == 7) doneF <= 1;
end
Also, you should not be assigning variables like multiplierF in multiple always blocks, you will get non-deterministic behavior and will likely fail to synthesize. On posedge clk both blocks will execute and you cannot know which one will execute last, so it may give different results on different simulators.

Related

Why doesn't the up/down counter count down?

I was doing the Logic Design assignment, and I found some problems I can't solve.
I need to design a 6-bit counter, and this counter needs to count with two functions, for up and down respectively.
I have done the up part and down part, but when I run the simulation, the counting down part doesn't work correctly.
The function for counting down: the next a = a - 2^n, where n = 0, 1, 2, 3... eg. a1 = 63, a2 = 63 - 1 = 62, a3 = 62 - 2 = 60, a4 = 56...
But the simulation with my program, it becomes 63, 62, 61(63 - 2), 59(63 - 4)...
By the way, this assignment has a reset feature.
However, my program won't keep counting after being reset.
It should back to zero and continue counting theoretically.
The following is my code:
`timescale 1ns/100ps
module lab2_1(
input clk,
input rst,
output reg [5:0] out
);
reg [5:0] cnt;
wire [5:0] cnt_next;
reg updown;
wire [5:0] out_next;
initial begin
out = 0;
cnt = 1;
updown = 1;
end
assign cnt_next = (out == 6'b111111) ? 0 : cnt + 1;
assign out_next = out - (2**cnt);
always #(*) begin
if(out == 6'b111111)begin
updown = 0;
end
if(out == 6'b000000)begin
updown = 1;
end
if(rst == 1) begin
out = 0;
updown = 1;
cnt = 0;
end
end
always #(posedge clk, posedge rst) begin
if(updown == 1)begin
if(out > cnt)begin
out <= out - cnt;
end
else
out <= out + cnt;
end
else begin
out <= out_next;
end
cnt <= cnt_next;
end
endmodule
The testbench just monitors the output and drives the inpupts.
`timescale 1ns/100ps
module lab2_1_t;
wire [5:0] out;
reg clk;
reg rst;
lab2_1 v(clk, rst, out);
initial begin
clk = 0;
rst = 0;
$monitor($time,":clk = %b, rst = %b, out = %d", clk, rst, out);
end
always #10 clk = ~clk;
always #10000 rst = ~rst;
endmodule
You should not make assignments to the same signal (such as cnt) from multiple blocks. You can assign to cnt from a single always block. I don't think you need both out and cnt.
Here is a simplified version which automatically switches between up and down:
module lab2_1(
input clk,
input rst,
output reg [5:0] cnt
);
reg updown;
always #(posedge clk, posedge rst) begin
if (rst) begin
updown <= 1;
end else if (cnt == 6'b111110) begin
updown <= 0;
end else if (cnt == 6'b000001) begin
updown <= 1;
end
end
always #(posedge clk, posedge rst) begin
if (rst) begin
cnt <= 0;
end else if (updown) begin
cnt <= cnt + 1;
end else begin
cnt <= cnt - 1;
end
end
endmodule
The code shows a more typical use of the reset signal in the sequential always block. See also for more examples.
Here is a modified testbench where the reset is asserted at time 0, then released after a couple clock cycles. At the end, it asserts reset again so you can see that the counter goes to 0.
module lab2_1_t;
wire [5:0] out;
reg clk;
reg rst;
lab2_1 v(clk, rst, out);
initial begin
$monitor($time,":clk = %b, rst = %b, out = %d", clk, rst, out);
clk = 0;
rst = 1;
#40 rst = 0;
#10000 rst = 1;
#1000 $finish;
end
always #10 clk = ~clk;
endmodule

Can't resolve multiple constant drivers for net Quartus error

this is a very basic question but if somebody can help me with these errors, I'd really appreciate it. I am an EE undergrad, new to Verilog, and I'd appreciate any help/explanation.
The errors I received were:
10028 Can't resolve multiple constant drivers for "led" at compare_block.sv (66)
10029 Constant driver at compare_block.sv(61)
What are the multiple constant drivers here? Originally, I had the led assignment (led <= led_val) within the second always block, and I thought moving it up to the first always block would change the errors, but it did not.
module compare_block (clk, reset_n, result, led);
parameter data_width = 8; /
parameter size = 1000;
input clk, reset_n;
input [data_width:0] result;
logic [(data_width):0] data_from_rom;
logic [9:0] addr_to_rom;
output reg led;
reg [(data_width):0] comp_sig [size-1:0];
reg [data_width:0] comp_sig_temp;
reg [(data_width):0] filt_sig [size-1:0];
reg [(data_width):0] ans_sig [size-1:0];
integer i, iii;
reg [9:0] ii ;
integer sum_array;
wire [(data_width+3):0] array_avg;
reg [data_width:0] summed_arr [size-2 : 0];//container for all summation steps
wire total_sum;
reg ans_sig_done;
reg [data_width : 0] summed_ans;
reg [data_width:0] max_val, error_val;
initial begin
i = 0;
ii = 0;
led=0;
data_from_rom='b000000000;
summed_ans='b000000000;
max_val='b000000000;
for (iii=0;iii<(size-1);iii=iii+1) begin
filt_sig[iii]=0;
ans_sig [iii]=0;
comp_sig[iii]=0;
summed_arr[iii]=0;
end
end
//port map to ROM
rom_compare ref_wave(
.clk(clk),
.addr(addr_to_rom), //text file?
.data(data_from_rom)
);
//Moore FSM
localparam [3:0]
s0=0, s1 = 1, s2 = 2, s3 = 3, s4 = 4, s5 = 5;
reg [3:0] state_reg, state_next;
initial state_next = 0;
always #(posedge clk, negedge reset_n) begin
if (reset_n == 'b0) begin //reset is active low
state_reg <= s0;
end else begin
state_reg <= state_next;
led <= led_val;
end
end
always #(state_reg) begin
state_next = state_reg;
led=0;
case (state_reg)
s0 : begin //initial state, reset state
if (!reset_n) begin
led <= 0;
ii <= 0;
end else begin
state_next <= s1;
end
end
s1 : begin
if (ii>(size)) begin
ii <= 0;
end else begin
addr_to_rom <= ii;
state_next <= s2;
end
end
s2 : begin
comp_sig_temp <= data_from_rom;
filt_sig [ii] <= result;
state_next <= s3;
end
s3 : begin
comp_sig[ii] <= comp_sig_temp;
state_next <= s4;
end
s4 : begin
ans_sig[ii] <= filt_sig[ii] - comp_sig[ii];
state_next <= s5;
end
s5 : begin
if (ii>(size-2)) begin
ans_sig_done = 1;
end else begin
ans_sig_done = 0;
end
ii <= ii+1;
state_next <= s0;
end
endcase
end
reg [(data_width+2):0] sum;
integer j;
always #* begin
sum = 0;
if (ans_sig_done == 1) begin
for (j=4; j<(size-1); j=j+2) begin
sum = sum +ans_sig[j];
if (ans_sig[j] > max_val) begin
max_val = ans_sig[j];
end
end
end
end
assign array_avg = sum >> 'd3; //2^3 = 8
always #(clk, result) begin //posedge clk, result
filt_sig [i] <= result;
i <= i + 1;
end
assign error_val = max_val >> 'd2; //approx 25% of max value of array
reg led_val;
always #(*)
begin
if (array_avg < error_val) begin
led_val <= 'b1;
end else begin
led_val <= 'b0;
end
end
endmodule
I figured it out!
The two instances were me trying to initialize one led = 0 in one always block and then assigning led <= led_val in another. You can't refer to an output in two different always blocks.

Module instantiation with the "number sign"

I have the main module with FIFO stuff.
Here it is:
module syn_fifo #(
parameter DATA_WIDTH = 8, // inpit capacity
parameter DATA_DEPTH = 8 // the depth of the FIFO
)
(
input wire clk,
input wire rst,
// Write_______________________________________________
input wire [DATA_WIDTH-1:0]din, // the input data
input wire wren, // Write anable
output wire full,
// Read________________________________________________
output wire [DATA_WIDTH-1:0]dout, // The output data
input wire rden, // Read enable
output wire empty
);
integer q_size; // The queue size(length)
integer golova; // The queue beginning
integer hvost; // The end of queue
reg [DATA_WIDTH-1:0]fifo[DATA_DEPTH-1:0];
assign full = (q_size == DATA_DEPTH) ? 1'b1: 1'b0; // FIFO is full
/*
True { full = (q_size==DATA_TEPTH) = 1 }, then wire "full" goes to "1" value
False { full = (q_size==DATA_TEPTH) = 0 }, then wire "full" goes to "0" value
*/
assign empty = (golova == hvost); // FIFO is empty
assign dout = fifo[hvost]; // FWFT (other write mode)
integer i;
//___________(The queue fullness)___________________
always #(posedge clk or posedge rst)
begin
if (rst == 1'b1)
begin
for (i = 0; i < DATA_DEPTH; i = i + 1) // incrementing the FIFO
fifo[i] <= 0; // Resetting the FIFO
golova <= 0; // Resetting the queue start variable
end
else
begin //Write_______________________________________
if (wren && ~full)
begin
fifo[golova] <= din; // putting data in to the golova
if (golova == DATA_DEPTH-1) // restrictions for the queue beginning
golova <= 0; // Reset the beginning
else
golova <= golova + 1; // other occurence incrementing
end
end
end
//Reading
always #(posedge clk or posedge rst)
begin
if (rst == 1'b1)
begin
hvost <= 0;
end
else
begin
if (rden && !empty)
/*for staying inside the queue limits - make the check of non equality of the "hvost" & "queue size"*/
begin
if (hvost == DATA_DEPTH-1) // if hvost = DATA_DEPTH-1, then
hvost <= 0; // Reset hvost
else
hvost <= hvost + 1;
end
end
end
always # (posedge clk)
begin
if (rst == 1'b1) begin
q_size <= 0;
end
else
begin
case ({wren && ~full, rden && ~empty} )
2'b01: q_size <= q_size + 1; // RO
2'b10: q_size <= q_size - 1; // WO
default: q_size <= q_size; // read and write at the same time
endcase
end
end
endmodule
Also i've got the testbench module down delow:
`timescale 1ns / 1ps
module fifo_tb();
localparam CLK_PERIOD = 10;
reg clk;
reg rst;
always begin
clk <= 1'b0;
#(CLK_PERIOD / 2);
clk <= 1'b1;
#(CLK_PERIOD / 2);
end
localparam DATA_WIDTH = 8;
localparam DATA_DEPTH = 4;
reg [DATA_WIDTH-1:0]din;
reg wren;
reg rden;
wire [DATA_WIDTH-1:0]dout;
wire empty;
wire full;
wire wr_valid;
wire rd_valid;
task write;
input integer length;
begin
if (length) begin
#(posedge clk);
wren <= 1'b1;
while (length) begin
#(posedge clk);
if (wr_valid) begin
length <= length - 1;
if (length == 1) begin
wren <= 1'b0;
end
end
end
end
end
endtask
task read;
input integer length;
begin
if (length) begin
#(posedge clk);
rden <= 1'b1;
while (length) begin
#(posedge clk);
if (rd_valid) begin
length <= length - 1;
if (length == 1) begin
rden <= 1'b0;
end
end
end
end
end
endtask
initial begin
rst <= 1'b0;
wren <= 1'b0;
rden <= 1'b0;
#50;
rst <= 1'b1;
#50;
rst <= 1'b0;
#200;
/* Test Start */
//write(4);
//read(4);
/* Test Stop */
#1000;
$finish;
end
assign wr_valid = wren & ~full;
assign rd_valid = rden & ~empty;
always #(posedge clk) begin
if (rst == 1'b1) begin
din <= 0;
end else begin
if (wr_valid == 1'b1) begin
din <= din + 1;
end
end
end
// write?
always begin
#400;
write(5);
#15;
write(7);
#25;
write(3);
#15;
write(9);
#15;
write(1);
#10000;
end
// read?
always begin
#420;
read(3);
#37;
read(13);
#21;
read(7);
#15;
read(9);
#15;
read(4);
#20;
read(7);
#10000;
end
initial begin
$dumpfile("test.vcd");
$dumpvars(0,fifo_tb);
end
syn_fifo #(.DATA_WIDTH(DATA_WIDTH),
.DATA_DEPTH(DATA_DEPTH)) dut ( .clk(clk),
.rst(rst),
.din(din),
.wren(wren),
.full(full),
.dout(dout),
.rden(rden),
.empty(empty));
endmodule
Trying to compile all of it with iVerilog + GTKwave + Win10 by next command:
C:\Program Files\iverilog\bin>iverilog -o fifo.v fifo_tb.v
The compiler gives me the next message:
fifo_tb.v:138:error: Unknown module type:syn_fifo
2 error(s) during elaboration.
These modules were missing:syn_fifo referenced 1 times
At the necessary line "138" maybe the main mistake is covered by the "Number sign" in module instantiation?
/*132|*/ initial begin
/*133|*/ $dumpfile("test.vcd");
/*134|*/ $dumpvars(0,fifo_tb);
/*135|*/ end
/*136|*/
/*137|*/ syn_fifo #(.DATA_WIDTH(DATA_WIDTH),
/*138|*/ .DATA_DEPTH(DATA_DEPTH)) dut ( .clk(clk),
/*139|*/ .rst(rst),
/*140|*/ .din(din),
/*141|*/ .wren(wren),
/*142|*/ .full(full),
/*143|*/ .dout(dout),
/*144|*/ .rden(rden),
/*145|*/ .empty(empty));
/*146|*/
/*147|*/ endmodule
I'm not shure of that.
Seems like you are indicating fifo.v to be your output file, try:
iverilog -o syn_fifo.tb -s fifo_tb fifo_tb.v fifo.v
-o -> output file
-s -> top module (in this case, the test one)
(after everything, include all the files)
Then, to run it:
vvp syn_fifo.tb
Thank you, dear #m4j0rt0m
I just forgot to type in the output file name at the CMD window. Was very exhausted so haven't noticed such a detail)))
Usually it looks like:
iverilog -o OUTPUT_FILE_NAME fifo_tb.v fifo.v
And also I tried your advice, and it's finally done!

Change code to use block RAMs

I want to implement in Verilog the following Matlab code:
symBuf = [symBuf(numFFT/2+1:end); zeros(numFFT/2,1)];
symBuf(KF+(1:KF)) = symBuf(KF+(1:KF)) + txSymb;
It is a simple overlap and add operation.
Here is my implementation:
module overlap
#(K = 3,
FFT = 128
)
(
input signed [15:0] symbInReal ,
input signed [15:0] symbInImag ,
input clock ,
input reset ,
input readyIn ,
input validIn ,
input lastIn ,
output signed [15:0] outReal ,
output signed [15:0] outImag ,
output reg lastOut ,
output wire readyOut ,
output reg validOut
);
reg signed [15:0] previousSymbolReal [2*FFT*K-1:0] ;
reg signed [15:0] previousSymbolImag [2*FFT*K-1:0] ;
reg signed [15:0] txSymbolBuffReal [K*FFT-1:0] ;
reg signed [15:0] txSymbolBuffImag [K*FFT-1:0] ;
reg [15:0] counter ;
reg [1:0] state ;
reg [3:0] nextstate ;
reg [15:0] clockcount ;
reg signed [15:0] outputValueReal ;
reg signed [15:0] outputValueImag ;
reg [15:0] buffcount ;
reg [7:0] symboutcount ;
reg [7:0] symbincount ;
reg last ;
reg lastvalidout ;
wire lastout ;
integer i;
initial begin
for (i=0; i<2*FFT*K ; i = i + 1) begin
previousSymbolReal[i] = 0;
previousSymbolImag[i] = 0;
end
end
always#(posedge clock) begin
if(~reset) begin
counter <= 0;
end else begin
counter <= counter +1;
if(nextstate != state)
counter <= 0;
end
end
always#(*) begin
if(~reset) begin
nextstate = 0;
end else begin
nextstate = state;
if(readyIn) begin
case(state)
4'd0: begin
if(validIn || last) begin
nextstate = 1;
end
end
4'd1: begin
if (counter == (FFT*K-2)) begin
nextstate = 2;
end
end
4'd2: begin
nextstate = 0;
end
endcase
end
end
end
always#(posedge clock) begin
if(~reset) begin
state <= 0;
end else begin
if(readyIn)
state <= nextstate;
end
end
always#(posedge clock) begin
if(~reset) begin
clockcount <= 0;
symboutcount <= 0;
lastOut <= 0;
end else begin
if(readyIn) begin
clockcount <= clockcount +1 ;
case(state)
4'd0: begin
validOut <= 0;
clockcount <= 0;
lastOut <= 0;
end
4'd1: begin
if(~lastvalidout)
validOut <= 1;
outputValueReal <= previousSymbolReal[clockcount+ FFT/2];
outputValueImag <= previousSymbolImag[clockcount+ FFT/2];
end
4'd2: begin
outputValueReal <= previousSymbolReal[clockcount + FFT/2];
outputValueImag <= previousSymbolImag[clockcount + FFT/2];
clockcount <= 0;
if(~lastvalidout)
validOut <= 1;
if(symboutcount == symbincount + 1 && last)
lastOut <= 1;
symboutcount <= symboutcount +1 ;
end
endcase
end
end
end
assign readyOut = readyIn;
genvar M;
generate
for(M=0;M<K*FFT;M=M+1) begin
always#(posedge clock) begin
if(state==2) begin
previousSymbolReal[M] <= previousSymbolReal[M+FFT/2];
previousSymbolImag[M] <= previousSymbolImag[M+FFT/2];
end
end
end
for(M=K*FFT;M<2*K*FFT-FFT/2;M=M+1) begin
always#(posedge clock) begin
if(state==2) begin
previousSymbolReal[M] <= previousSymbolReal[M+FFT/2]+txSymbolBuffReal[M-K*FFT];
previousSymbolImag[M] <= previousSymbolImag[M+FFT/2]+txSymbolBuffImag[M-K*FFT];
end
end
end
for(M=2*K*FFT-FFT/2;M<2*K*FFT;M=M+1) begin
always#(posedge clock) begin
if(state==2) begin
previousSymbolReal[M] <= txSymbolBuffReal[M-K*FFT];
previousSymbolImag[M] <= txSymbolBuffImag[M-K*FFT];
end
end
end
endgenerate
always#(posedge clock) begin
if(~reset) begin
buffcount <= 0;
symbincount <= 0;
last <= 0;
end else begin
if(validIn) begin
txSymbolBuffReal[buffcount] <= symbInReal;
txSymbolBuffImag[buffcount] <= symbInImag;
buffcount <= buffcount +1;
if(buffcount == K*FFT-1) begin
symbincount <= symbincount + 1;
buffcount <= 0;
end
if(lastIn)
last <= 1;
end
end
end
always#(posedge clock) begin
if(~reset)
lastvalidout <= 0;
else begin
if(last && lastOut)
lastvalidout <= 1;
end
end
assign outReal = outputValueReal;
assign outImag = outputValueImag;
endmodule
The problem here is that I have 4 huge arrays which take up to 4 times what is available in my FPGA.
Hence, I want to be able to use block RAMs. However, I don't think it's possible due to the number of read and write operations performed.
Does anyone have a solution for this?
However, I don't think it's possible due to the number of read and write operations performed.
Correct. At least, not without major changes to your design.
A typical block RAM element can only read or write one (or sometimes two) values per clock cycle, but your generate loops are trying to update every element in the RAM at once!
To make this operation use a block RAM, you will need to implement a state machine to update one element per clock cycle, and to sequence operations such that other states wait until the updates have completed.
If you want to accelerate this, you may be able to split the array into multiple block RAMs so that multiple values can be updated in parallel. (You will need to carefully consider which elements need to be read/written to avoid conflicts.)

Error count for two different patterns in verilog

I have made 2 forms of data patterns and wants to compare them in the form of error count.....when the 2 patterns are not equal, the error count should be high....i made the code including test bench, but when i ran behavioral sumilation, the error count is only high at value 0 and not at value 1.....I expect it to be high at both 0 and 1....please help me out in this, since I am new with verilog
here is the code
`timescale 1ns / 1ps
module pattern(
clk,
start,
rst,enter code here
clear,
data_in1,
data_in2,
error
);
input [1:0] data_in1;
input [1:0] data_in2;
input clk;
input start;
input rst;
input clear;
output [1:0] error;
reg [1:0] comp_out;
reg [1:0] i = 0;
assign error = comp_out;
always#(posedge clk)
begin
comp_out = 0;
if(rst)
comp_out = 0;
else
begin
for(i = 0; i < 2; i = i + 1)
begin
if(data_in1[i] != data_in2[i])
comp_out <= comp_out + 1;
end
end
end
endmodule
here is the test bench for the above code
`timescale 1ns / 1ps
module tb_pattern();
// inputs
reg clk;
reg rst;
reg [1:0] data_in1;
reg [1:0] data_in2;
wire [1:0] error;
//outputs
//wire [15:0] count;
//instantiate the unit under test (UUT)
pattern uut (
// .count(count),
.clk(clk),
.start(start),
.rst(rst),
.clear(clear),
.data_in1(data_in1),
.data_in2(data_in2),
.error(error)
);
initial begin
clk = 1'b0;
rst = 1'b1;
repeat(4) #10 clk = ~clk;
rst = 1'b0;
forever #10 clk = ~clk; // generate a clock
end
initial begin
//initialize inputs
clk = 0;
//rst = 1;
data_in1 = 2'b00;
data_in2 = 2'b01;
#100
data_in1 = 2'b11;
data_in2 = 2'b00;
#100
$finish;
end
//force rest after delay
//#20 rst = 0;
//#25 rst = 1;
endmodule
When incrementing in a for loop you need to use blocking assignment (=), however when assigning flops you should use non-blocking assignment (<=). When you need to use a for loop to assign a flop, it is best to split the combinational and synchronous functionality into separate always blocks.
...
reg [1:0] comp_out, next_comb_out;
always #* begin : comb
next_comp_out = 0;
for (i = 0; i < 2; i = i + 1) begin
if (data_in1[i] != data_in2[i]) begin
next_comp_out = next_comp_out + 1;
end
end
end
always #(posedge clk) begin : dff
if (rst) begin
comb_out <= 1'b0;
end
else begin
comb_out <= next_comp_out;
end
end
...
begin
for(i = 0; i < 2; i = i + 1)
begin
if(data_in1[i] != data_in2[i])
comp_out <= comp_out + 1;
end
end
This for loop doesn't work the way you think it does. Because this is a non-blocking assignment, only the last iteration of the loop actually applies. So only the last bit is actually being compared here.
If both bits of your data mismatch, then the loop unrolls to something which looks like this:
comp_out <= comp_out + 1;
comp_out <= comp_out + 1;
Because this is non-blocking, the RHS of the equation are both evaluated at the same time, leaving you with:
comp_out <= 0 + 1;
comp_out <= 0 + 1;
So even though you tried to use this as a counter, only the last line takes effect, and you get a mismatch count of '1', no matter how many bits mismatch.
Try using a blocking statement (=) for comp_out assignment instead.

Resources