I have the following PL/I code:
declare 1 u union,
2 c character(1),
2 ci fixed binary(4) unsigned;
ci = data_mem(data_ptr);
put list (c);
What this does, is it takes an integer and outputs that as if it was an ascii/ebcdic value. So it shows characters. Sofar this works.
The problem now is that each character is printed at an 24 spaces interval, as if 3 TABs are inserted.
I tried converting c to a string first and then applying trim() but that did not help.
Any ideas?
This is the default PUT LIST behavior for a PRINT-attribute file. From the IBM Enterprise PL/I for z/OS Language Reference, under Stream-oriented Data Transmission -> LIST -> PUT list-directed (emphasis mine):
The values of the data-list items are converted to character representations (except for graphics) and transmitted to the data stream. A blank separates successive data values transmitted. For PRINT files, items are separated according to program tab settings (see “PRINT attribute”).
The next manual section discusses the PRINT attribute. Here we have
Data values transmitted by list- and data-directed data transmission are
automatically aligned on the left margin and on implementation-defined preset tab
positions.
Since you omitted FILE, your PUT is going to the default FILE(SYSPRINT). SYSPRINT is defined implicitly as FILE ENVIRONMENT(F RECSIZE(121)) OUTPUT PRINT STREAM (see Input and Output -> FILE Attribute -> File constant in the Language Reference, and Defining and Using Consecutive Data Sets -> Using PRINT files with stream I/O in the Programmer's Guide). IIRC, the defaults are every 24, which gives 5 tabs per line, compatible with the old 120-byte printers common in the early days of PL/I F in the late 1960s. This is modifiable by declaring a PLITABS structure (described in the previously mentioned manual section).
LIST- and DATA-directed I/O are intended to be quick & dirty I/O interfaces with little regard for formatting on output (but are very forgiving on input). EDIT is better for formatting output, but it does show a lot of its FORTRAN roots for input and output. Personally, for traditional reports using formatted output, and for record input, I would work with record I/O, which is analogous to standard COBOL I/O.
I have an input file in this format: (length 20, 10 chars and 10 numerics)
jname1 0000500006
bname1 0000100002
wname1 0000400007
yname1 0000000006
jname1 0000100001
mname1 0000500012
mname2 0000700013
In my jcl I have defined my sysin data as such:
SYSIN DATA *
SORT FIELDS=(1,1,CH,A)
SUM FIELDS=(11,10,FD)
DATAEND
*
It works fine as long as I don't add the sum fields so I'm wondering if I'm using the wrong format for my numerics seeing as I know they start at field 11 and have a length of 10 the format is the only thing that could be wrong.
As you might have already realised the point of this JCL is to just list the values but grouped by the first letter of the name (so for the example data and JCL I have given it would group the numeric for mname1 and mname2 together but leave the other records untouched).
I'm kind of new at this so I was wonder what I need for the format if my numerics are like that in the input file.
If new to DFSORT, get hold of the DFSORT Getting Started guide for your version of DFSORT (http://www-01.ibm.com/support/docview.wss?uid=isg3T7000080).
This takes your through all the basic operations with many examples.
The DFSORT Application Programming Guide describes everything you need to know, in detail. Again with examples. Appendix C of that document contains all the data-types available (note, when you tried to use FD, FD is not valid data-type, so probably a typo). There are Tables throughout the document listing what data-types are available where, if there is a particular limit.
For advanced techniques, consult the DFSORT Smart Tricks publication here: http://www-01.ibm.com/support/docview.wss?uid=isg3T7000094
You need to understand a bit more the way data is stored on a Mainframe as well.
Decimals (which can be "packed-decimal" or "zoned-decimal") do not contain a decimal-point. The decimal-point is implied. In high-level languages you tell the compiler where the decimal-point is (in a fixed position) and the compiler does the alignments for you. In Assembler, you do everything yourself.
Decimals are 100% accurate, as there are machine-instructions which act directly on packed-decimal data giving packed-decimal results.
A field which actually contains a decimal-point, cannot be directly used in arithmetic.
An unsigned field is treated as positive when used in any arithmetic.
The SUM statement supports a limited number of numeric definitions, and you have chosen the correct one. It does not matter that your data is unsigned.
If the format of the output from SUM is not what you want, look at OPTION ZDPRINT (or NOZDPRINT).
If you want further formatting, you can use OUTREC or OUTFIL.
As an option to using SUM, you can use OUTFIL reporting functions (especially, although not limited to, if you want a report). You can use SECTIONS and TRAILER3 with TOT/TOTAL.
Something to watch for with SUM (which is not a problem with the reporting features) is if any given one (or more) of your SUMmed fields exceed the field size. To continue to use SUM if that happens, you need to extend the field in INREC and then get SUM to use the new, sufficient, size.
After some trial and error I finally found it, appearantly the format I needed to use was the ZD format (zoned decimal, signed), so my sysin becomes this:
SYSIN DATA *
SORT FIELDS=(1,1,CH,A)
SUM FIELDS=(11,10,ZD)
DATAEND
*
even though my records don't contain any decimals and they are unsigned, I don't really get it so if someone knows why it's like that please go ahead and explain it to me.
For now the way I'm going to remember it is this: Z = symbol for real (meaning integers so no decimals)
i'm trying to preset zlib's dictionary for compression. as of python 3.3 zlib.compressobj function offers the option. the docs say it should be some bytesarray or a bytes object e.g. b"often-found".
now: how to pass multiple strings ordered ascending by their likeliness to occur as suggested in the docs? is there a secret delimiter e.g. b"likely,more-likely,most-likely"?
No, there is no delimiter needed. All the dictionary is is a resource in which to look for strings that match portions of the data to be compressed. Therefore strings that are likely to occur can simply be concatenated. Or even overlapped if starts and ends match. For example if you want the words lighthouse and household to be available, you can just put lighthousehold in the dictionary.
Since it takes more bits to represent matches that are further back, you would put the most likely matches at the end of the dictionary.
I am looking for a algorithm for string processing, I have searched for it but couldn't find a algorithm that meets my requirements. I will explain what the algorithm should do with an example.
There are two sets of word sets defined as shown below:
**Main_Words**: swimming, driving, playing
**Words_in_front**: I am, I enjoy, I love, I am going to go
The program will search through a huge set of words as soon it finds a word that is defined in Main_Words it will check the words in front of that Word to see if it has any matching words defined in Words_in_front.
i.e If the program encounters the word "Swimming" it has to check if the words in front of the word "Swimming" are one of these: I am, I enjoy, I love, I am going to go.
Are there any algorithms that can do this?
A straightforward way to do this would be to just do a linear scan through the text, always keeping track of the last N+1 words (or characters) you see, where N is the number of words (or characters) in the longest phrase contained in your words_in_front collection. When you have a "main word", you can just check whether the sequence of N words/characters before it ends with any of the prefixes you have.
This would be a bit faster if you transformed your words_in_front set into a nicer data structure, such as a hashmap (perhaps keyed by last letter in the phrase..) or a prefix/suffix tree of some sort, so you wouldn't have to do an .endsWith over every single member of the set of prefixes each time you have a matching "main word." As was stated in another answer, there is much room for optimization and a few other possible implementations, but there's a start.
Create a map/dictionary/hash/associative array (whatever is defined in your language) with key in Main_Words and Words_in_front are the linked list attached to the entry pointed by the key. Whenever you encounter a word matching a key, go to the table and see if in the attached list there are words that match what you have in front.
That's the basic idea, it can be optimized for both speed and space.
You should be able to build a regular expression along these lines:
I (am|enjoy|love|am going to go) (swimming|driving|playing)
What's the difference between the text data type and the character varying (varchar) data types?
According to the documentation
If character varying is used without length specifier, the type accepts strings of any size. The latter is a PostgreSQL extension.
and
In addition, PostgreSQL provides the text type, which stores strings of any length. Although the type text is not in the SQL standard, several other SQL database management systems have it as well.
So what's the difference?
There is no difference, under the hood it's all varlena (variable length array).
Check this article from Depesz: http://www.depesz.com/index.php/2010/03/02/charx-vs-varcharx-vs-varchar-vs-text/
A couple of highlights:
To sum it all up:
char(n) – takes too much space when dealing with values shorter than n (pads them to n), and can lead to subtle errors because of adding trailing
spaces, plus it is problematic to change the limit
varchar(n) – it's problematic to change the limit in live environment (requires exclusive lock while altering table)
varchar – just like text
text – for me a winner – over (n) data types because it lacks their problems, and over varchar – because it has distinct name
The article does detailed testing to show that the performance of inserts and selects for all 4 data types are similar. It also takes a detailed look at alternate ways on constraining the length when needed. Function based constraints or domains provide the advantage of instant increase of the length constraint, and on the basis that decreasing a string length constraint is rare, depesz concludes that one of them is usually the best choice for a length limit.
As "Character Types" in the documentation points out, varchar(n), char(n), and text are all stored the same way. The only difference is extra cycles are needed to check the length, if one is given, and the extra space and time required if padding is needed for char(n).
However, when you only need to store a single character, there is a slight performance advantage to using the special type "char" (keep the double-quotes — they're part of the type name). You get faster access to the field, and there is no overhead to store the length.
I just made a table of 1,000,000 random "char" chosen from the lower-case alphabet. A query to get a frequency distribution (select count(*), field ... group by field) takes about 650 milliseconds, vs about 760 on the same data using a text field.
(this answer is a Wiki, you can edit - please correct and improve!)
UPDATING BENCHMARKS FOR 2016 (pg9.5+)
And using "pure SQL" benchmarks (without any external script)
use any string_generator with UTF8
main benchmarks:
2.1. INSERT
2.2. SELECT comparing and counting
CREATE FUNCTION string_generator(int DEFAULT 20,int DEFAULT 10) RETURNS text AS $f$
SELECT array_to_string( array_agg(
substring(md5(random()::text),1,$1)||chr( 9824 + (random()*10)::int )
), ' ' ) as s
FROM generate_series(1, $2) i(x);
$f$ LANGUAGE SQL IMMUTABLE;
Prepare specific test (examples)
DROP TABLE IF EXISTS test;
-- CREATE TABLE test ( f varchar(500));
-- CREATE TABLE test ( f text);
CREATE TABLE test ( f text CHECK(char_length(f)<=500) );
Perform a basic test:
INSERT INTO test
SELECT string_generator(20+(random()*(i%11))::int)
FROM generate_series(1, 99000) t(i);
And other tests,
CREATE INDEX q on test (f);
SELECT count(*) FROM (
SELECT substring(f,1,1) || f FROM test WHERE f<'a0' ORDER BY 1 LIMIT 80000
) t;
... And use EXPLAIN ANALYZE.
UPDATED AGAIN 2018 (pg10)
little edit to add 2018's results and reinforce recommendations.
Results in 2016 and 2018
My results, after average, in many machines and many tests: all the same (statistically less than standard deviation).
Recommendation
Use text datatype, avoid old varchar(x) because sometimes it is not a standard, e.g. in CREATE FUNCTION clauses varchar(x)≠varchar(y).
express limits (with same varchar performance!) by with CHECK clause in the CREATE TABLE e.g. CHECK(char_length(x)<=10). With a negligible loss of performance in INSERT/UPDATE you can also to control ranges and string structure e.g. CHECK(char_length(x)>5 AND char_length(x)<=20 AND x LIKE 'Hello%')
On PostgreSQL manual
There is no performance difference among these three types, apart from increased storage space when using the blank-padded type, and a few extra CPU cycles to check the length when storing into a length-constrained column. While character(n) has performance advantages in some other database systems, there is no such advantage in PostgreSQL; in fact character(n) is usually the slowest of the three because of its additional storage costs. In most situations text or character varying should be used instead.
I usually use text
References: http://www.postgresql.org/docs/current/static/datatype-character.html
In my opinion, varchar(n) has it's own advantages. Yes, they all use the same underlying type and all that. But, it should be pointed out that indexes in PostgreSQL has its size limit of 2712 bytes per row.
TL;DR:
If you use text type without a constraint and have indexes on these columns, it is very possible that you hit this limit for some of your columns and get error when you try to insert data but with using varchar(n), you can prevent it.
Some more details: The problem here is that PostgreSQL doesn't give any exceptions when creating indexes for text type or varchar(n) where n is greater than 2712. However, it will give error when a record with compressed size of greater than 2712 is tried to be inserted. It means that you can insert 100.000 character of string which is composed by repetitive characters easily because it will be compressed far below 2712 but you may not be able to insert some string with 4000 characters because the compressed size is greater than 2712 bytes. Using varchar(n) where n is not too much greater than 2712, you're safe from these errors.
text and varchar have different implicit type conversions. The biggest impact that I've noticed is handling of trailing spaces. For example ...
select ' '::char = ' '::varchar, ' '::char = ' '::text, ' '::varchar = ' '::text
returns true, false, true and not true, true, true as you might expect.
Somewhat OT: If you're using Rails, the standard formatting of webpages may be different. For data entry forms text boxes are scrollable, but character varying (Rails string) boxes are one-line. Show views are as long as needed.
A good explanation from http://www.sqlines.com/postgresql/datatypes/text:
The only difference between TEXT and VARCHAR(n) is that you can limit
the maximum length of a VARCHAR column, for example, VARCHAR(255) does
not allow inserting a string more than 255 characters long.
Both TEXT and VARCHAR have the upper limit at 1 Gb, and there is no
performance difference among them (according to the PostgreSQL
documentation).
The difference is between tradition and modern.
Traditionally you were required to specify the width of each table column. If you specify too much width, expensive storage space is wasted, but if you specify too little width, some data will not fit. Then you would resize the column, and had to change a lot of connected software, fix introduced bugs, which is all very cumbersome.
Modern systems allow for unlimited string storage with dynamic storage allocation, so the incidental large string would be stored just fine without much waste of storage of small data items.
While a lot of programming languages have adopted a data type of 'string' with unlimited size, like C#, javascript, java, etc, a database like Oracle did not.
Now that PostgreSQL supports 'text', a lot of programmers are still used to VARCHAR(N), and reason like: yes, text is the same as VARCHAR, except that with VARCHAR you MAY add a limit N, so VARCHAR is more flexible.
You might as well reason, why should we bother using VARCHAR without N, now that we can simplify our life with TEXT?
In my recent years with Oracle, I have used CHAR(N) or VARCHAR(N) on very few occasions. Because Oracle does (did?) not have an unlimited string type, I used for most string columns VARCHAR(2000), where 2000 was at some time the maximum for VARCHAR, and in all practical purposes not much different from 'infinite'.
Now that I am working with PostgreSQL, I see TEXT as real progress. No more emphasis on the VAR feature of the CHAR type. No more emphasis on let's use VARCHAR without N. Besides, typing TEXT saves 3 keystrokes compared to VARCHAR.
Younger colleagues would now grow up without even knowing that in the old days there were no unlimited strings. Just like that in most projects they don't have to know about assembly programming.
I wasted way too much time because of using varchar instead of text for PostgreSQL arrays.
PostgreSQL Array operators do not work with string columns. Refer these links for more details: (https://github.com/rails/rails/issues/13127) and (http://adamsanderson.github.io/railsconf_2013/?full#10).
If you only use TEXT type you can run into issues when using AWS Database Migration Service:
Large objects (LOBs) are used but target LOB columns are not nullable
Due to their unknown and sometimes large size, large objects (LOBs) require more processing
and resources than standard objects. To help with tuning migrations of systems that contain
LOBs, AWS DMS offers the following options
If you are only sticking to PostgreSQL for everything probably you're fine. But if you are going to interact with your db via ODBC or external tools like DMS you should consider using not using TEXT for everything.
character varying(n), varchar(n) - (Both the same). value will be truncated to n characters without raising an error.
character(n), char(n) - (Both the same). fixed-length and will pad with blanks till the end of the length.
text - Unlimited length.
Example:
Table test:
a character(7)
b varchar(7)
insert "ok " to a
insert "ok " to b
We get the results:
a | (a)char_length | b | (b)char_length
----------+----------------+-------+----------------
"ok "| 7 | "ok" | 2