How to generate sinc wave using verilog - verilog

I'm making an "Arbitrary waveform generator" on FPGA. currently, I'm working on generating "sinc" wave using FPGA [using verilog].
For a fixed frequency, I can make the sinc using LUT on a ROM, but I need to give the option to make sinc of user-defined frequency.
So, any good idea how to make it???
Any help would be highly appreciated.

You can still use a LUT for the variable frequency sin(x) function.
Just generate a LUT of 1000 or so (depending on your desired resolution) entries of a single cycle of a sine wave. Then you decide how many entries to jump through each clock cycle based on the desired frequency.
As an example, if your clock is 1MHz, and the desired output frequency is 1KHz, then you step to the next LUT entry every clock (complete the period in 1000 clock cycles). If the desired output frequency is 10KHz, then you jump 10 entries in the LUT every cycle. (complete the period in 100 clock cycles)
To get the sinc though sin(x)/x, I think you will need to implement a division circuit, as I can't think of any way around that.

Related

Are there other than FFT ways to implement Guitar Tuner?

I want to do precise guitar tuner, this is usually done by many via computing FFT and getting peak. But this is of low appliance for several reasons:
Discrete precision, gives insuffient resolution for tuning bass guitar.
High computation time and complexity, when trying to increase buffer size(and/or sampling rate). Introduces visible delay(lag).
Most of frequency range where concentrates all FFT's precision is unused. Everything above 1-2 khz is not appliable for tuning musical instruments.
There should be simplier way for signals that have single-frequency sinusoidal shape. Given small enough buffer (say it 256 samples with 96khz sampling rate) - how could you measure a base(lowese) frequency?
In simple words: How to find frequency F, so that difference of "sine signal of frequency F" and "actually recorded signal" would give minimal error, than for any frequency, other than F ? (so we can definetely conclude that sinusoid of frequency F is best approximation of recorded sound buffer).
PS. Anything, but not using FFT!
Here is a simple approach based on zero crossing. It relies on being able to map the instrument signal to a simple sinuoid. This may work OK when signal to noise ratio is high, but is not a very robust method.
Bandpass filter around the fundamental frequency of the tone you want to tune for. Example 82.41 Hz for low E string on guitar.
Consider a window of the last N samples. Set it to ex 100ms to update the pitch estimate 10 times per second.
Perform zero-crossing detection with a threshold value T. T could be set to 10% of signal peak for example. Count the periods between each zero crossing, collect them in an array.
Take the median of the periods to get your pitch estimate
You can also compute the quantiles of the periods to estimate how reliable the method is. If they give very different numbers from the median, then the method is not working well.
The approach can be extended by computing autocorrelation on the zero-crossings, as described in
https://www.cycfi.com/2018/03/fast-and-efficient-pitch-detection-bitstream-autocorrelation/

Note Onset Detection using Spectral Difference

Im fairly new to onset detection. I read some papers about it and know that when working only with the time-domain, it is possible that there will be a large number of false-positives/negatives, and that it is generally advisable to work with either both the time-domain and frequency-domain or the frequency domain.
Regarding this, I am a bit confused because, I am having trouble on how the spectral energy or the results from the FFT bin can be used to determine note onsets. Because, aren't note onsets represented by sharp peaks in amplitude?
Can someone enlighten me on this? Thank you!
This is the easiest way to think about note onset:
think of a music signal as a flat constant signal. When and onset occurs you look at it as a large rapid CHANGE in signal (a positive or negative peak)
What this means in the frequency domain:
the FT of a constant signal is, well, CONSTANT! and flat
When the onset event occurs there is a rapid increase in spectrial content.
While you may think "Well you're actually talking about the peak of the onset right?" not at all. We are not actually interested in the peak of the onset, but rather the rising edge of the signal. When there is a sharp increase in the signal, the high frequency content increases.
one way to do this is using the spectrial difference function:
take your time domain signal and cut it up into overlaping strips (typically 50% overlap)
apply a hamming/hann window (this is to reduce spectrial smudging) (remember cutting up the signal into windows is like multiplying it by a pulse, in the frequency domain its like convolving the signal with a sinc function)
Apply the FFT algorithm on two sucessive windows
For each DFT bin, calculate the difference between the Xn and Xn-1 bins if it is negative set it to zero
square the results and sum all th bins together
repeat till end of signal.
look for peaks in signal using median thresholding and there are your onset times!
Source:
https://adamhess.github.io/Onset_Detection_Nov302011.pdf
and
http://www.elec.qmul.ac.uk/people/juan/Documents/Bello-TSAP-2005.pdf
You can look at sharp differences in amplitude at a specific frequency as suspected sound onsets. For instance if a flute switches from playing a G5 to playing a C, there will be a sharp drop in amplitude of the spectrum at around 784 Hz.
If you don't know what frequency to examine, the magnitude of an FFT vector will give you the amplitude of every frequency over some window in time (with a resolution dependent on the length of the time window). Pick your frequency, or a bunch of frequencies, and diff two FFTs of two different time windows. That might give you something that can be used as part of a likelihood estimate for a sound onset or change somewhere between the two time windows. Sliding the windows or successive approximation of their location in time might help narrow down the time of a suspected note onset or other significant change in the sound.
"Because, aren't note onsets represented by sharp peaks in amplitude?"
A: Not always. On percussive instruments (including piano) this is true, but for violin, flute, etc. notes often "slide" into each other as frequency changes without sharp amplitude increases.
If you stick to a single instrument like the piano onset detection is do-able. Generalized onset detection is a much more difficult problem. There are about a dozen primitive features that have been used for onset detection. Once you code them, you still have to decide how best to use them.

How would I sample an audio tract at nyquist frequency using c and a micro-controller?

This is as simple and less vague as I can make it, so please and try to help me out.
By this, meaning I want to:
1) Input an audio track (Anaglod)
2) Using the micro controllers ADC
convert it to a digital output
3) Then Have the
microcontollers/boards timer sample
the data at selected intervuls.
4) Tell the board to take the "Sampled
audio track" and now sample it at a
rate of 2B, ( B meaning the highest
frequency.
F= Frequency
F(Hz=1/s) E.x. 100Hz = 1000 (Cyc/sec)
F(s)= 1/(2f)
Example problem: 1000 hz = Highest
frequency 1/2(1000hz) = 1/2000 =
5x10(-3) sec/cyc or a sampling rate of
5ms
5) Spit it back at the boards ADC and
convert it back to analog, thus the
out-put is a perfect reconstruction of
the initial audio track.
Using Fourier Analysis i will determine the highest frequency at which I will sample the track at.
However in theory it sounds easy enough and straight forward, but what I need is to program this in C and utilize my msp430 chip/Experimenters board to sample the track.
Im going to be using Texas Instruments CCS and Octave for my programming and debugging. This is my board that I will be using.
Questions:
Is C the right language for this? Can I get any examples of how to sample the tack at nyquist frequency using C? What code in C will tell the board to utilize the ADC component? And any recommended information that is similar or that will help me on this project.
I don't fully understand what you want to do, but I'll answer your specific questions.
Yes, C is the right language for this.
You should probably look at application code on the Texas Instruments website to see how to interact with the ADC. You can start with the example code listed at the bottom of the page you linked to. It has C code that shows how to use the ADC.
Incidentally, an ADC only converts analog to digital. To go digital to analog, you need a DAC, which this board does not appear to have.
5) ADC doesnt do Digital-to-Analog Conversion, 'cause it's ADC, not DAC. But you may use PWM with Low-pass filter to output analog signal.
It is often a bad idea to sample signal at Nyquist frequency. This will cause lots of aliasing at high frequencies. For example signal with frequency F-deltaF, where deltaF as small, will look like F amplitude modulated by 2deltaF.
That's why CD sampling rate is 44.1 kSPS, not 30 kSPS (as twice 15 kHz -- higher frequency limit).
You have to sample the signal with a frequency that is twice as high as the highest frequency in your signal. Otherwise you get aliasing effects (distortion of the original signal). It is not possible to determine the highest frequency in your signal with fourier analysis because to perform an fft you have to convert your analog signal to digital values - with a conversion frequency (that you want to determine with the fft).
The highest frequency in your input signal is defined by the analog input filter that the signal must pass before analog to digital conversion.

Identifying common periodic waveforms (square, sine, sawtooth, ...)

Without any user interaction, how would a program identify what type of waveform is present in a recording from an ADC?
For the sake of this question: triangle, square, sine, half-sine, or sawtooth waves of constant frequency. Level and frequency are arbitrary, and they will have noise, small amounts of distortion, and other imperfections.
I'll propose a few (naive) ideas, too, and you can vote them up or down.
You definitely want to start by taking an autocorrelation to find the fundamental.
With that, take one period (approximately) of the waveform.
Now take a DFT of that signal, and immediately compensate for the phase shift of the first bin (the first bin being the fundamental, your task will be simpler if all phases are relative).
Now normalise all the bins so that the fundamental has unity gain.
Now compare and contrast the rest of the bins (representing the harmonics) against a set of pre-stored waveshapes that you're interested in testing for. Accept the closest, and reject overall if it fails to meet some threshold for accuracy determined by measurements of the noisefloor.
Do an FFT, find the odd and even harmonic peaks, and compare the rate at which they decrease to a library of common waveform.. peak... ratios.
Perform an autocorrelation to find the fundamental frequency, measure the RMS level, find the first zero-crossing, and then try subtracting common waveforms at that frequency, phase, and level. Whichever cancels out the best (and more than some threshold) wins.
This answer presumes no noise and that this is a simple academic exercise.
In the time domain, take the sample by sample difference of the waveform. Histogram the results. If the distribution has a sharply defined peak (mode) at zero, it is a square wave. If the distribution has a sharply defined peak at a positive value, it is a sawtooth. If the distribution has two sharply defined peaks, one negative and one positive,it is a triangle. If the distribution is broad and is peaked at either side, it is a sine wave.
arm yourself with more information...
I am assuming that you already know that a theoretically perfect sine wave has no harmonic partials (ie only a fundamental)... but since you are going through an ADC you can throw the idea of a theoretically perfect sine wave out the window... you have to fight against aliasing and determining what are "real" partials and what are artifacts... good luck.
the following information comes from this link about csound.
(*) A sawtooth wave contains (theoretically) an infinite number of harmonic partials, each in the ratio of the reciprocal of the partial number. Thus, the fundamental (1) has an amplitude of 1, the second partial 1/2, the third 1/3, and the nth 1/n.
(**) A square wave contains (theoretically) an infinite number of harmonic partials, but only odd-numbered harmonics (1,3,5,7,...) The amplitudes are in the ratio of the reciprocal of the partial number, just as sawtooth waves. Thus, the fundamental (1) has an amplitude of 1, the third partial 1/3, the fifth 1/5, and the nth 1/n.
I think that all of these answers so far are quite bad (including my own previous...)
after having thought the problem through a bit more I would suggest the following:
1) take a 1 second sample of the input signal (doesn't need to be so big, but it simplifies a few things)
2) over the entire second, count the zero-crossings. at this point you have the cps (cycles per second) and know the frequency of the oscillator. (in case that's something you wanted to know)
3) now take a smaller segment of the sample to work with: take precisely 7 zero-crossings worth. (so your work buffer should now, if visualized, look like one of the graphical representations you posted with the original question.) use this small work buffer to perform the following tests. (normalizing the work buffer at this point could make life easier)
4) test for square-wave: zero crossings for a square wave are always very large differences, look for a large signal delta followed by little to no movement until the next zero crossing.
5) test for saw-wave: similar to square-wave, but a large signal delta will be followed by a linear constant signal delta.
6) test for triangle-wave: linear constant (small) signal deltas. find the peaks, divide by the distance between them and calculate what the triangle wave should look like (ideally) now test the actual signal for deviance. set a deviance tolerance threshold and you can determine whether you are looking at a triangle or a sine (or something parabolic).
First find the base frequency and the phase. You can do that with FFT. Normalize the sample. Then subtract each sample with the sample of the waveform you want to test (same frequency and same phase). Square the result add it all up and divide it by the number of samples. The smallest number is the waveform you seek.

Sound pressure display for WAVE PCM data

The digital sound is playing using DirectSound device. It is necessary to display sound activity in decibels - like analog devices do.
What is the right way to calculate sound pressure from the WAVE PCM data (44100 Hz, 16-bit)?
if you just need an "idea" of the sound pressure, you can simply compute the log-energy on some time franmes of the signal: split the signal every N samples, compute 10*log(sum(xn**2)) where x are the N samples, and you get a value in the dB domain. If you need to precisely display a measure (that is your 0 dB matches say a mixtable 0dB), it is a bit more complicated.
See here for more details:
http://music.columbia.edu/pipermail/music-dsp/2002-April/048341.html
Sound pressure is a measure of force per unit area. To determine this you would have to have information about the speaker(s) on which the audio is played. You can obtain a decibel level with respect to an arbitrary reference (as opposed to the threshold of hearing) with the algorithm proposed by cournape.
Calculate the average signal power over a time interval, compute the base-10 logarithm and multiply by 19. The average power is calculated by averaging the the square of each sample over the interval. Note that positive and negative values are necessary (i.e. it must be an AC signal). So, make sure the PCM values are either floating-point, 2's complement or offset unsigned values accordingly.
Also, by applying Parseval's theorum and the Fourier transform you can also generate signal levels for different frequency bands.

Resources