I need help about managing Hugepages on raspberry pi 4 running raspberry pi OS 64 bit.
I did not find much reliable information online.
First I recompiled the kernel source enabling Memory Management options --->Transparent Hugepage Support option.
When I run the command:
grep -i huge /proc/meminfo
The output is:
AnonHugePages: 319488 kB
ShmemHugePages: 0 kB
FileHugePages: 0 k
and running the command:
cat /sys/kernel/mm/transparent_hugepage/enabled
the output is:
[always] madvise never
So I think Transparent Huge Pages (AnonHugePages) should be set.
I need to use HugePages to map the largest contiguous memory chunk using mmap function, c code.
mem = mmap(NULL,buf_size,PROT_READ|PROT_WRITE,MAP_SHARED,fd,0);
Looking at https://www.man7.org/linux/man-pages/man2/mmap.2.html there are two flags to manage the hugepages: MAP_HUGETLB flag and MAP_HUGE_2MB, MAP_HUGE_1GB flag.
My question is: To use HugePages should I map in this way?
mem = mmap(NULL,buf_size,PROT_READ|PROT_WRITE,MAP_SHARED,MAP_HUGETLB,fd,0);
Kernel configuration:
CONFIG_SYS_SUPPORTS_HUGETLBFS=y
CONFIG_ARCH_WANT_HUGE_PMD_SHARE=y
CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE=y
CONFIG_HAVE_ARCH_HUGE_VMAP=y
CONFIG_TRANSPARENT_HUGEPAGE=y
CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS=y
# CONFIG_TRANSPARENT_HUGEPAGE_MADVISE is not set
CONFIG_TRANSPARENT_HUGE_PAGECACHE=y
# CONFIG_HUGETLBFS is not set
Huge pages are a way to enhance the performances of the applications by reducing the number of TLB misses. The mechanism coalesces contiguous standard physical pages (typical size of 4 KB) into a big one (e.g. 2 MB). Linux implements this feature in two flavors: Transparent Huge pages and explicit huge pages.
Transparent Huge Pages
Transparent huge pages (THP) are managed transparently by the kernel. The user space applications have no control on them. The kernel makes its best to allocate huge pages whenever it is possible but it is not guaranteed. Moreover, THP may introduce overhead as an underlying "garbage collector" kernel daemon named khugepaged is in charge of the coalescing of the physical pages to make huge pages. This may consume CPU time with undesirable effects on the performances of the running applications. In systems with time critical applications, it is generally advised to deactivate THP.
THP can be disabled on the boot command line (cf. the end of this answer) or from the shell in sysfs:
$ cat /sys/kernel/mm/transparent_hugepage/enabled
always [madvise] never
$ sudo sh -c "echo never > /sys/kernel/mm/transparent_hugepage/enabled"
$ cat /sys/kernel/mm/transparent_hugepage/enabled
always madvise [never]
N.B.: Some interesting papers exist on the performance evaluation/issues of the THP:
Transparent Hugepages: measuring the performance impact;
Settling the Myth of Transparent HugePages for Databases.
Explicit huge pages
If the huge pages are required at application level (i.e. from user space). HUGETLBFS kernel configuration must be set to activate the hugetlbfs pseudo-filesystem (the menu in the kernel configurator is something like: "File systems" --> "Pseudo filesystems" --> "HugeTLB file system support"). In the kernel source tree this parameter is in fs/Kconfig:
config HUGETLBFS
bool "HugeTLB file system support"
depends on X86 || IA64 || SPARC64 || (S390 && 64BIT) || \
SYS_SUPPORTS_HUGETLBFS || BROKEN
help
hugetlbfs is a filesystem backing for HugeTLB pages, based on
ramfs. For architectures that support it, say Y here and read
<file:Documentation/admin-guide/mm/hugetlbpage.rst> for details.
If unsure, say N.
For example, on an Ubuntu system, we can check:
$ cat /boot/config-5.4.0-53-generic | grep HUGETLBFS
CONFIG_HUGETLBFS=y
N.B.: On Raspberry Pi, it is possible to configure the apparition of /proc/config.gz and do the same with zcat to check the parameter. To make it, the configuration menu is: "General setup" --> "Kernel .config support" + "Enable access to .config through /proc/config.gz"
When this parameter is set, hugetlbfs pseudo-filesystem is added into the kernel build (cf. fs/Makefile):
obj-$(CONFIG_HUGETLBFS) += hugetlbfs/
The source code of hugetlbfs is located in fs/hugetlbfs/inode.c. At startup, the kernel will mount internal hugetlbfs file systems to support all the available huge page sizes for the architecture it is running on:
static int __init init_hugetlbfs_fs(void)
{
struct vfsmount *mnt;
struct hstate *h;
int error;
int i;
if (!hugepages_supported()) {
pr_info("disabling because there are no supported hugepage sizes\n");
return -ENOTSUPP;
}
error = -ENOMEM;
hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
sizeof(struct hugetlbfs_inode_info),
0, SLAB_ACCOUNT, init_once);
if (hugetlbfs_inode_cachep == NULL)
goto out;
error = register_filesystem(&hugetlbfs_fs_type);
if (error)
goto out_free;
/* default hstate mount is required */
mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
if (IS_ERR(mnt)) {
error = PTR_ERR(mnt);
goto out_unreg;
}
hugetlbfs_vfsmount[default_hstate_idx] = mnt;
/* other hstates are optional */
i = 0;
for_each_hstate(h) {
if (i == default_hstate_idx) {
i++;
continue;
}
mnt = mount_one_hugetlbfs(h);
if (IS_ERR(mnt))
hugetlbfs_vfsmount[i] = NULL;
else
hugetlbfs_vfsmount[i] = mnt;
i++;
}
return 0;
out_unreg:
(void)unregister_filesystem(&hugetlbfs_fs_type);
out_free:
kmem_cache_destroy(hugetlbfs_inode_cachep);
out:
return error;
}
A hugetlbfs file system is a sort of RAM file system into which the kernel creates files to back the memory regions mapped by the applications.
The amount of needed huge pages can be reserved by writing the number of needed huge pages into /sys/kernel/mm/hugepages/hugepages-hugepagesize/nr_hugepages.
Then, mmap() is able to map some part of the application address space onto huge pages. Here is an example showing how to do it:
#include <sys/mman.h>
#include <unistd.h>
#include <stdio.h>
#define HP_SIZE (2 * 1024 * 1024) // <-- Adjust with size of the supported HP size on your system
int main(void)
{
char *addr, *addr1;
// Map a Huge page
addr = mmap(NULL, HP_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_SHARED| MAP_HUGETLB, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap()");
return 1;
}
printf("Mapping located at address: %p\n", addr);
pause();
return 0;
}
In the preceding program, the memory pointed by addr is based on huge pages. Example of usage:
$ gcc alloc_hp.c -o alloc_hp
$ ./alloc_hp
mmap(): Cannot allocate memory
$ cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
0
$ sudo sh -c "echo 1 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages"
$ cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
1
$ ./alloc_hp
Mapping located at address: 0x7f7ef6c00000
In another terminal, the process map can be observed to verify the size of the memory page (it is blocked in pause() system call):
$ pidof alloc_hp
13009
$ cat /proc/13009/smaps
[...]
7f7ef6c00000-7f7ef6e00000 rw-s 00000000 00:0f 331939 /anon_hugepage (deleted)
Size: 2048 kB
KernelPageSize: 2048 kB <----- The page size is 2MB
MMUPageSize: 2048 kB
[...]
In the preceding map, the file name /anon_hugepage for the huge page region is made internally by the kernel. It is marked deleted because the kernel removes the associated memory file which will make the file disappear as soon as there are no longer references on it (e.g. when the calling process ends, the underlying file is closed upon exit(), the reference counter on the file drops to 0 and the remove operation finishes to make it disappear).
Allocation of other huge page sizes
On Raspberry Pi 4B, the default huge page size is 2MB but the card supports several other huge page sizes:
$ ls -l /sys/kernel/mm/hugepages
total 0
drwxr-xr-x 2 root root 0 Nov 23 14:58 hugepages-1048576kB
drwxr-xr-x 2 root root 0 Nov 23 14:58 hugepages-2048kB
drwxr-xr-x 2 root root 0 Nov 23 14:58 hugepages-32768kB
drwxr-xr-x 2 root root 0 Nov 23 14:58 hugepages-64kB
To use them, it is necessary to mount a hugetlbfs type file system corresponding to the size of the desired huge page. The kernel documentation provides details on the available mount options. For example, to mount a hugetlbfs file system on /mnt/huge with 8 Huge Pages of size 64KB, the command is:
mount -t hugetlbfs -o pagesize=64K,size=512K,min_size=512K none /mnt/huge
Then it is possible to map huge pages of 64KB in a user program. The following program creates the /tmp/hpfs directory on which it mounts a hugetlbfs file system with a size of 4 huge pages of 64KB. A file named /memfile_01 is created and extended to the size of 2 huge pages. The file is mapped into memory thanks to mmap() system call. It is not passed MAP_HUGETLB flag as the provided file descriptor is for a file created on a hugetlbfs filesystem. Then, the program calls pause() to suspend its execution in order to make some observations in another terminal:
#include <sys/types.h>
#include <errno.h>
#include <stdio.h>
#include <sys/mman.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <fcntl.h>
#define ERR(fmt, ...) do { \
fprintf(stderr, \
"ERROR#%s#%d: "fmt, \
__FUNCTION__, __LINE__, ## __VA_ARGS__); \
} while(0)
#define HP_SIZE (64 * 1024)
#define HPFS_DIR "/tmp/hpfs"
#define HPFS_SIZE (4 * HP_SIZE)
int main(void)
{
void *addr;
char cmd[256];
int status;
int rc;
char mount_opts[256];
int fd;
rc = mkdir(HPFS_DIR, 0777);
if (0 != rc && EEXIST != errno) {
ERR("mkdir(): %m (%d)\n", errno);
return 1;
}
snprintf(mount_opts, sizeof(mount_opts), "pagesize=%d,size=%d,min_size=%d", HP_SIZE, 2*HP_SIZE, HP_SIZE);
rc = mount("none", HPFS_DIR, "hugetlbfs", 0, mount_opts);
if (0 != rc) {
ERR("mount(): %m (%d)\n", errno);
return 1;
}
fd = open(HPFS_DIR"/memfile_01", O_RDWR|O_CREAT, 0777);
if (fd < 0) {
ERR("open(%s): %m (%d)\n", "memfile_01", errno);
return 1;
}
rc = ftruncate(fd, 2 * HP_SIZE);
if (0 != rc) {
ERR("ftruncate(): %m (%d)\n", errno);
return 1;
}
addr = mmap(NULL, 2 * HP_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
if (MAP_FAILED == addr) {
ERR("mmap(): %m (%d)\n", errno);
return 1;
}
// The file can be closed
rc = close(fd);
if (0 != rc) {
ERR("close(%d): %m (%d)\n", fd, errno);
return 1;
}
pause();
return 0;
} // main
The preceding program must be run as root as it calls mount():
$ gcc mount_tlbfs.c -o mount_tlbfs
$ cat /sys/kernel/mm/hugepages/hugepages-64kB/nr_hugepages
0
$ sudo sh -c "echo 8 > /sys/kernel/mm/hugepages/hugepages-64kB/nr_hugepages"
$ cat /sys/kernel/mm/hugepages/hugepages-64kB/nr_hugepages
8
$ sudo ./mount_tlbfs
In another terminal, the /proc/[pid]/smaps file can be displayed to check the huge page allocation. As soon as the program writes into the huge pages, the Lazy allocation mechanism triggers the effective allocation of the huge pages.
Cf. This article for future details
Early reservation
The huge pages are made with consecutive physical memory pages. The reservation should be done early in the system startup (especially on heavy loaded systems) as the physical memory may be so fragmented that it is sometimes impossible to allocate huge pages afterward. To reserve as early as possible, this can be done on the kernel boot command line:
hugepages=
[HW] Number of HugeTLB pages to allocate at boot.
If this follows hugepagesz (below), it specifies
the number of pages of hugepagesz to be allocated.
If this is the first HugeTLB parameter on the command
line, it specifies the number of pages to allocate for
the default huge page size. See also
Documentation/admin-guide/mm/hugetlbpage.rst.
Format: <integer>
hugepagesz=
[HW] The size of the HugeTLB pages. This is used in
conjunction with hugepages (above) to allocate huge
pages of a specific size at boot. The pair
hugepagesz=X hugepages=Y can be specified once for
each supported huge page size. Huge page sizes are
architecture dependent. See also
Documentation/admin-guide/mm/hugetlbpage.rst.
Format: size[KMG]
transparent_hugepage=
[KNL]
Format: [always|madvise|never]
Can be used to control the default behavior of the system
with respect to transparent hugepages.
See Documentation/admin-guide/mm/transhuge.rst
for more details.
On Raspberry Pi, the boot command line can typically be updated in /boot/cmdline.txt and the current boot command line used by the running kernel can be seen in /proc/cmdline.
N.B.:
This recipe is explained in more details here and here
There is a user space library called libhugetlbfs which offers a layer of abstraction on top of the kernel's hugetlbfs mechanism described here. It comes with library services like get_huge_pages() and accompanying tools like hugectl. The goal of this user space service is to map the heap and text+data segments of STATICALLY linked executables into huge pages (the mapping of dynamically linked programs is not supported). All of this relies on the kernel features described in this answer.
I would like to know whether it's possible the default affinity for linux processes. The default value is ~0 (truncated to the number of CPUs available) but I'd like to be able to set it for all the process of the system. It would be also nice to do this at boot time so I could effectively prevent any process from using certain CPUs (unless explicitely set by a syscall).
Thanks!
David
From C program:
#define _GNU_SOURCE
#include <sched.h>
int sched_setaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask);
see man sched_setaffinity for further information.
From the shell:
taskset <mask> <command> <args>
or
taskset -p <pid> <mask>
where <mask> is, for example, 0x00000001 for the first CPU.
I have a very simple UDP server program
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <string.h>
int main(int argc, char**argv)
{
int sockfd,n;
struct sockaddr_in servaddr,cliaddr;
socklen_t len;
char mesg[1000];
sockfd=socket(AF_INET,SOCK_DGRAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr=htonl(INADDR_ANY);
servaddr.sin_port=htons(54000);
bind(sockfd,(struct sockaddr *)&servaddr,sizeof(servaddr));
for (;;)
{
len = sizeof(cliaddr);
n = recvfrom(sockfd,mesg,1000,0,(struct sockaddr *)&cliaddr,&len);
sendto(sockfd,mesg,n,0,(struct sockaddr *)&cliaddr,sizeof(cliaddr));
printf("-------------------------------------------------------\n");
mesg[n] = 0;
printf("Received the following:\n");
printf("%s",mesg);
printf("-------------------------------------------------------\n");
}
}
I put it on several machines and let a udp client to send packets to it
it can accept incoming udp packets successfully
then I place it in a machine with fedora 18
I compile the program and run it
and then I let a udp client to send packets to it(the same as on the other machines)
but the program can't accept incoming UDP packets
I used tcpdump for capturing and I can see the incoming udp packets
why the server program doesn't accept the incoming UDP packet on this machine?
I checked the iptables rule iptables -L
and the results are in
https://docs.google.com/file/d/0B09y_TWqTtwlNHp1eTJkTFNuY0k/edit?usp=sharing
are there potential reasons for this?
thanks!
The code looks OK at first glance.
The most obvious explanation might simply be that the Fedora 18 machine has been installed with iptables firewalling configured by default...
Try running lsmod to look for loaded iptables modules, and/or iptables -L to list the current ruleset.
I'd like to use libudev to watch for certain devices. Specifically, I want to monitor for removable storage: USB Hard Drives, USB Keys, SD cards, etc. The libudev API lets you find a device if you know that device's parent's 'subsystem' and 'devtype'. I tried the devices out on my computer and used udevadm to find that all the storage types had device subsystem of 'block'->'scsi', but I have no idea what devtype these devices have. Is there a list of devtypes and subsystems I can use as a reference somewhere, or a better method to look up devtype?
You can get list of subsystems with ls /sys/class/
I'm not sure about device types though. I guess you can get this using:
ls -l /sys/class/scsi_disk/
total 0
lrwxrwxrwx 1 root root 0 2011-12-07 21:20 0:0:0:0 -> ../../devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0/scsi_disk/0:0:0:0
cat /sys/devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0/scsi_disk/0:0:0:0/device/vendor
ATA
cat /sys/devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0/scsi_disk/0:0:0:0/device/model
ST9500325AS
You can try other files in device directory.
Actually I think you need:
cat /sys/devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0/scsi_disk/0:0:0:0/device/type
0
cat /usr/include/scsi/scsi.h | grep TYPE_
#define TYPE_DISK 0x00
#define TYPE_TAPE 0x01
#define TYPE_PROCESSOR 0x03 /* HP scanners use this */
#define TYPE_WORM 0x04 /* Treated as ROM by our system */
#define TYPE_ROM 0x05
#define TYPE_SCANNER 0x06
#define TYPE_MOD 0x07 /* Magneto-optical disk -
#define TYPE_MEDIUM_CHANGER 0x08
#define TYPE_ENCLOSURE 0x0d /* Enclosure Services Device */
#define TYPE_NO_LUN 0x7f
What's the best and most reliable way to detect if a 32-bit user mode program is running on a 64-bit kernel or not (i.e. if the system is in 'long mode')? I'd rather not call external programs if possible (or have to load any kernel modules).
Note: I want to detect whether a 64-bit kernel is being used (or really, whether the CPU is in long mode), not simply if a 64-bit capable processor is present (/proc/cpuinfo tells me that but not whether the 64-bit capability is being used).
The kernel fakes a 32-bit processor if uname is compiled 32-bit or if setarch i686 is used.
Call the uname() function and check the returned machine string, which will be x86_64 for a 64-bit Intel platform.
One way of reversing the effect of the use of setarch is to reset the personality:
#include <stdio.h>
#include <sys/utsname.h>
#include <sys/personality.h>
int main()
{
struct utsname u;
personality(PER_LINUX);
uname(&u);
puts(u.machine);
return 0;
}
This shows the right results when compiled in 32-bit mode and run on a 64-bit system:
$ gcc -m32 -o u u.c
$ ./u
x86_64
$ setarch i686 ./u
x86_64
EDIT: Fixed code to reverse effect of setarch.
Reference.
Assuming that uname() is cheating, there are still several mechanisms. One way is to check the width of the address of any of the kernel symbols.
#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
int main(int argc, char **argv) {
char *inputline = malloc(1024);
char *oinputline = inputline;
int fd = open("/proc/kallsyms", O_RDONLY);
int numnibbles = 0;
if (fd == -1) {
perror("open");
free(inputline);
exit(1);
}
read(fd, inputline, 1024);
close(fd);
while(!isspace(*inputline)) {
numnibbles++;
inputline++;
}
printf("%dbit\n", numnibbles*4);
free(oinputline);
exit (0);
}
If the kernel is configured for it, you can read the kernel config from /proc/config.gz
zcat /proc/config.gz | grep CONFIG_64BIT
# CONFIG_64BIT is not set
I'm not sure how portable you need it to be- it doesn't seem like a super common config option.