I'm moving my renderer to a different thread.
During this process I'm making two calls to IDirect3D9::CreateDevice:
1. from the 'rendering thread' - in order to create a rendering device and resize it properly
2. from the 'main thread' - here I'm creating a Null device in order to compile shaders etc.
These calls of course can overlap (be made simultaneously ), so I'm synchronizing them with a CriticalSection.
The problem is that one of these calls sometime freezes. DirectX doesn't throw any warnings prior to that happening, so I suspect an internal deadlock.
I studied the documentation and it's mentioned that all calls that operate on a single device, especially IDirect3D9::CreateDevice, IDirect3DDevice9::TestCooperativeLevel and IDirect3DDevice9::Reset, need to be called from the same thread - but I have that covered.
So what am I missing? Can anyone please tell me?
Thanks,
Paksas
I only have a vague memory of this but:
The docs state "Any call to create, release, or reset the device must be done using the same thread as the window procedure of the focus window."
As I remember things, even if you try and create a device using a NULL HWND, internally Direct3D goes and digs one up for your app anyway.
Therefore one of your threads is surely violating the first point.
Related
I switched to Vulkan from OpenGL to use multi-threading improvements.
In OpenGL, I was able to load dynamically object to the scene (buffer, textures, etc) while rendering by using a waiting system. I was loading all app-side stuffs in a thread, then when it was ready, just before a frame render in the main thread, I was sending everything into the video memory. That was fine.
With Vulkan, I know I can call some functions between threads without provoking the well known segfault from OpenGL. But, this doesn't works with vkQueueSubmit(). I already know, I tried the naive way. To me, it seems logical you can't bother a queue from multiple threads.
I came with some ideas, but I don't know which one is good or bad.
First, I would go the OpenGL way, I will prepare everything I can from the CPU/App side, then just before render a frame, I will submit buffers (with transfer queue) to the video memory. But I feel there is no a real improvement from OpenGL way...
Second, I will try to use the synchronization mechanism to be able to send buffers in a thread and render from an other. But I keep reading there is a lot of way to slow down everything by causing irrelevant locks or by using incorrectly semaphores and fences.
So my question, is basically what path to pick to solve this problem ? How can I load a buffer dynamically from an other thread while the main thread is rendering without making too much pain to performances ? How Vulkan can help ?
If you want to stream resources for immediate use (i.e. the main render cannot proceed without them), then you're pretty much going to either block the main thread waiting, or have it spin doing something visually interesting (e.g. an animated loading screen) waiting for the resources to load.
If you want to stream resources while the app is doing real rendering then the main trick here is to load resources asynchronously in the background and only switch to using those resources in the main thread once they are already loaded. If the main thread ever ends up actually blocked on a semaphore then you've probably already started dropping frames, so your "engine" design needs to ensure that never happens. A lot of game use simple low-detail proxy objects as stand-in versions while the high-detail version is loading in the background.
None of this is particularly related to the graphics API - both GL and Vulkan need the same macro-scale behavior. Vulkan API features don't particularly help because the major bottlenecks which cause problems here are storage/network/CPU which have nothing to do with the graphics part of the problem.
I decided to trust threads !
In the first place it seems to work, I get a lot of :
[MESSAGE:Validation Error: [ UNASSIGNED-Threading-MultipleThreads ] Object 0: handle = 0x56414228bad8, type = VK_OBJECT_TYPE_QUEUE; | MessageID = 0x141cb623 | THREADING ERROR : vkQueueSubmit(): object of type VkQueue is simultaneously used in thread 0x7f6b977fe640 and thread 0x7f6bc2bcb740]
But it works !
So, the basic idea is to have a thread for loading objects while the engine is drawing. This thread takes care of creating the UBO for the location of the object, then when the geometry is loaded from RAM, it creates the VBO and IBO (I left material with image/UBO on hold for now), then creates the graphics pipeline (with layout, descriptor layout, shaders compiled with GLSLang on the fly) (The next idea is to reuse pipeline for similar needs) and finallly sets a flag to say the object is ready to use. In the other hand, I have my main thread rendering and takes new objects when they shows up ready.
I think it works because I have a gentle video card (GTX 1070) with multiple queues setup, I had one for graphics and an other one for transfer setup.
I'm pretty sure, this will crash or goes poorly with a GPU with a single queue, and this should be why the validation layers tolds me these messages.
I have an application that has multiple screens and a process that needs to get UI info from some and update others.
Tried many methods but the result always is always "not a Java FX thread". Without using some kind of thread the UI does not update Because of the multi screen nature of the app (not practical to change) I need to fundamentally change the application architecture which is why I am not posting any code - its all going to change.
What I cant work out is the best way to do this and as any changes are likely to require substantial work I am reluctant to try something that has little chance of success.
I know about Platform.runLater and tried adding that to the updates but that was complex and did not seem to be effective.
I do have the code on GitHub - its a personal leaning project that started in Scala 2 but if you have an interest in learning or pointing out my errors I can provide access.
Hope you have enjoyed a wonderful Christmas.
PS just make the repo public https://github.com/udsl/Processor6502
The problem is not that the Platform.runLater was not working its because the process is being called form a loop in a thread and without a yield the JavaFX thread never gets an opportunity to run. It just appeared to be failing โ again I fall foul of an assumption.
The thread calls a method from within a loop which terminates on a condition set by the method.
The process is planned to emulate the execution of 6502 processor instructions in 2 modes run and run-slow, run-slow is run with a short delay after each instruction execution.
The updates are to the main screen the PC, status flags and register contents. The run (debug) screen gets the current instruction display updated and other items will be added. In the future.
The BRK instruction with a zero-byte following is captures and set the execution mode to single-step essentially being a break point though in the future it will be possible via the debug screen to set a breakpoint and for the execution of the breakpoint to restore the original contents. This is to enable the debugging of a future hardware item โ time and finances permitting โ itโs a hobby after all ๐
It terns out that the JavaFX thread issue only happens when a FX control is written to but not when read from. Placing all reads and writes in a Platform.runLater was too complex which is why I was originally searching for an alternative solution but now only needed it protect the writes is much less a hassle.
In the process loop calling Thread.โyieldโ() enables the code in the Platform.runLater blocks to be executed on the JavaFX thread so the UI updates without an exception.
The code in the Run method:
val thread = new Thread {
override def run =
while runMode == RunMode.Running || runMode == RunMode.RunningSlow do
executeIns
Thread.`yield`()
if runMode == RunMode.RunningSlow then
Thread.sleep(50) // slow the loop down a bit
}
thread.start
Note that because yield is a Scala reserved word needs to quote it!
I know very similar questions have been asked before, but I am unable to find an answer for my specific problem. I have a main (GUI) thread which upon button press initializes a worker thread to perform some analysis. I am using signals and slots to communicate between my worker thread and my GUI thread (i.e. when the thread starts and when it finishes), but I need to go deeper than that. My worker thread actually calls another class in a separate implementation file which then iterates through a series of calculations which are sent to std::cout for each iteration (as the code used to be a console application for which I am now writing a GUI). I am trying to feed those outputs for each iteration back into my GUI thread so that my text browser is updated in real time as my code iterates. The problem is, when I emit a signal from the class my worker thread calls, it is not picked up by the GUI thread. I do not get any errors. Does anyone have any suggestions on how to transmit a signal to the GUI from a class that my worker thread is calling? I can post code as required, but I'm not sure what would be most helpful to see and my code is quite extensive (it's an aircraft performance application). Any help would be greatly appreciated. Thank you kindly!
1) Make sure the connect() call for connecting you signal returns true. If it does not, qdebug output usually tells you what is wrong
2) You should use the QueuedConnection type (the default (Auto) should work also)
Currently, I am able to hook onto Direct3D application and draw custom stuff onto its surface. However, I would like to suspend this application and then draw something else.
Is this even remotely possible to do so? Like creating another my own Direct3D window on top of that application?
I'm targetting only Windows 7, but the application I want to draw on is using only DirectX 9.
The problem is that I have very little experience with DirectX in general.
Sort of.
You're working with two different elements here, one quite large and but not particularly complex: hooking D3D. The other ("suspending" the app) is simple within that, but you don't quite want what you think you want.
To hook D3D, by the simplest method, you need to intercept the call to CreateDirect3D9 and return your own IDirect3D9, which later creates and returns your own IDirect3DDevice9. This will give you full control over the app's render process.
In order to "suspend" it, you need to wait for the desired trigger, then in your IDirect3DDevice9::Present, call your own event loop. This will, for all intents and purposes, suspend execution of the original app's code, but not the process itself (allowing your code and event loop to process). There will be some limitations of this, and you may not be able to consume window/Windows events (simply), but it will give you full control and effectively pause the original app.
Note, however, that you must intercept and reroute execution in every thread you want to "suspend," it's only specific to a single thread and you don't want physics or AI crunching on while render and UI are paused.
You need to perform your overlay drawing, whatever that may be, during your loop or your IDirect3DDevice9::Present hook, then call the real device's Present method as needed. If you want to run multiple frames of your overlay, then call the real Present repeatedly before returning from your Present. Tweak as necessary. Rendering here is done pretty much normally (check out general D3D tutorials for that), but there is one major catch: the device's state is unknown and may be incompatible, but must be "untouched" on return. This is handled simply by caching an IDirect3DStateBlock9 created from the device immediately after creating it. In your Present hook, create another state block with the state on entrance, restore the clean state block, run your code, then restore the entrance state block. You can work with any states, off a fresh slate, without damaging the device's state (I use this in practice, in works great).
If you want some rather extensive examples of how this works, I'd suggest checking out the Voodoo Shader project, which has full D3D8 and 9 hooks, including everything needed for overlays [/shameless own-project promotion]. Feel free to reuse any of the concepts, or comment with further questions; this certainly isn't all the details that may be useful to you.
This is a very complex thing to accomplish, as it is very much a hack to do so. The only people you see doing such things are steam, teamspeak, xfire, fraps, and a few hard-core devs.
There are kits out on the internet that show you have to inject a DLL into the memory space of the target application to achieve such a feat, and methods such as proxy DLLs.
Proxy DLL:
http://www.codeguru.com/cpp/g-m/directx/directx8/article.php/c11453
Injection:
http://www.progamercity.net/d3d/372-c-directx9-0-hooking-via-detours.html
Good luck, this will take you a while.
I have a worker thread in a class that is owned by a ChildView. (I intend to move this to the Doc eventually.) When the worker thread completes a task I want all the views to be updated. How can I make a call to tell the Doc to issue an UpdateAllViews()? Or is there a better approach?
Thank you.
Added by OP: I am looking for a simple solution. The App is running on a single user, single CPU computer and does not need network (or Internet) access. There is nothing to cause a deadlock.
I think I would like to have the worker thread post (or send) a message to cause the views to update.
Everything I read about threading seems way more complicated than what I need - and, yes, I understand that all those precautions are necessary for applications that are running in multiprocessor, multiuser, client-server systems, etc. But none of those apply in my situation.
I am just stuck at getting the right combination of getting the window handle, posting the message and responding to the message in the right functions and classes to compile and function at all.
UpdateAllViews is not thread-safe, so you need to marshal the call to the main thread.
I suggest you to signal a manual-reset event to mark your thread's completion and check the event's status in a WM_TIMER handler.
suggested reading:
First Aid for the Thread-Impaired:
Using Multiple Threads with MFC
More First Aid for the Thread
Impaired: Cool Ways to Take Advantage
of Multithreading