Haskell Type Coercion - haskell

I trying to wrap my head around Haskell type coercion. Meaning, when does can one pass a value into a function without casting and how that works. Here is a specific example, but I am looking for a more general explanation I can use going forward to try and understand what is going on:
Prelude> 3 * 20 / 4
15.0
Prelude> let c = 20
Prelude> :t c
c :: Integer
Prelude> 3 * c / 4
<interactive>:94:7:
No instance for (Fractional Integer)
arising from a use of `/'
Possible fix: add an instance declaration for (Fractional Integer)
In the expression: 3 * c / 4
In an equation for `it': it = 3 * c / 4
The type of (/) is Fractional a => a -> a -> a. So, I'm guessing that when I do "3 * 20" using literals, Haskell somehow assumes that the result of that expression is a Fractional. However, when a variable is used, it's type is predefined to be Integer based on the assignment.
My first question is how to fix this. Do I need to cast the expression or convert it somehow?
My second question is that this seems really weird to me that you can't do basic math without having to worry so much about int/float types. I mean there's an obvious way to convert automatically between these, why am I forced to think about this and deal with it? Am I doing something wrong to begin with?
I am basically looking for a way to easily write simple arithmetic expressions without having to worry about the neaty greaty details and keeping the code nice and clean. In most top-level languages the compiler works for me -- not the other way around.

If you just want the solution, look at the end.
You nearly answered your own question already. Literals in Haskell are overloaded:
Prelude> :t 3
3 :: Num a => a
Since (*) also has a Num constraint
Prelude> :t (*)
(*) :: Num a => a -> a -> a
this extends to the product:
Prelude> :t 3 * 20
3 * 20 :: Num a => a
So, depending on context, this can be specialized to be of type Int, Integer, Float, Double, Rational and more, as needed. In particular, as Fractional is a subclass of Num, it can be used without problems in a division, but then the constraint will become
stronger and be for class Fractional:
Prelude> :t 3 * 20 / 4
3 * 20 / 4 :: Fractional a => a
The big difference is the identifier c is an Integer. The reason why a simple let-binding in GHCi prompt isn't assigned an overloaded type is the dreaded monomorphism restriction. In short: if you define a value that doesn't have any explicit arguments,
then it cannot have overloaded type unless you provide an explicit type signature.
Numeric types are then defaulted to Integer.
Once c is an Integer, the result of the multiplication is Integer, too:
Prelude> :t 3 * c
3 * c :: Integer
And Integer is not in the Fractional class.
There are two solutions to this problem.
Make sure your identifiers have overloaded type, too. In this case, it would
be as simple as saying
Prelude> let c :: Num a => a; c = 20
Prelude> :t c
c :: Num a => a
Use fromIntegral to cast an integral value to an arbitrary numeric value:
Prelude> :t fromIntegral
fromIntegral :: (Integral a, Num b) => a -> b
Prelude> let c = 20
Prelude> :t c
c :: Integer
Prelude> :t fromIntegral c
fromIntegral c :: Num b => b
Prelude> 3 * fromIntegral c / 4
15.0

Haskell will never automatically convert one type into another when you pass it to a function. Either it's compatible with the expected type already, in which case no coercion is necessary, or the program fails to compile.
If you write a whole program and compile it, things generally "just work" without you having to think too much about int/float types; so long as you're consistent (i.e. you don't try to treat something as an Int in one place and a Float in another) the constraints just flow through the program and figure out the types for you.
For example, if I put this in a source file and compile it:
main = do
let c = 20
let it = 3 * c / 4
print it
Then everything's fine, and running the program prints 15.0. You can see from the .0 that GHC successfully figured out that c must be some kind of fractional number, and made everything work, without me having to give any explicit type signatures.
c can't be an integer because the / operator is for mathematical division, which isn't defined on integers. The operation of integer division is represented by the div function (usable in operator fashion as x `div` y). I think this might be what is tripping you up in your whole program? This is unfortunately just one of those things you have to learn by getting tripped up by it, if you're used to the situation in many other languages where / is sometimes mathematical division and sometimes integer division.
It's when you're playing around in the interpreter that things get messy, because there you tend to bind values with no context whatsoever. In interpreter GHCi has to execute let c = 20 on its own, because you haven't entered 3 * c / 4 yet. It has no way of knowing whether you intend that 20 to be an Int, Integer, Float, Double, Rational, etc
Haskell will pick a default type for numeric values; otherwise if you never use any functions that only work on one particular type of number you'd always get an error about ambiguous type variables. This normally works fine, because these default rules are applied while reading the whole module and so take into account all the other constraints on the type (like whether you've ever used it with /). But here there are no other constraints it can see, so the type defaulting picks the first cab off the rank and makes c an Integer.
Then, when you ask GHCi to evaluate 3 * c / 4, it's too late. c is an Integer, so must 3 * c be, and Integers don't support /.
So in the interpreter, yes, sometimes if you don't give an explicit type to a let binding GHC will pick an incorrect type, especially with numeric types. After that, you're stuck with whatever operations are supported by the concrete type GHCi picked, but when you get this kind of error you can always rebind the variable; e.g. let c = 20.0.
However I suspect in your real program the problem is simply that the operation you wanted was actually div rather than /.

Haskell is a bit unusual in this way. Yes you can't divide to integers together but it's rarely a problem.
The reason is that if you look at the Num typeclass, there's a function fromIntegral this allows you to convert literals into the appropriate type. This with type inference alleviates 99% of the cases where it'd be a problem. Quick example:
newtype Foo = Foo Integer
deriving (Show, Eq)
instance Num Foo where
fromInteger _ = Foo 0
negate = undefined
abs = undefined
(+) = undefined
(-) = undefined
(*) = undefined
signum = undefined
Now if we load this into GHCi
*> 0 :: Foo
Foo 0
*> 1 :: Foo
Foo 0
So you see we are able to do some pretty cool things with how GHCi parses a raw integer. This has a lot of practical uses in DSL's that we won't talk about here.
Next question was how to get from a Double to an Integer or vice versa. There's a function for that.
In the case of going from an Integer to a Double, we'd use fromInteger as well. Why?
Well the type signature for it is
(Num a) => Integer -> a
and since we can use (+) with Doubles we know they're a Num instance. And from there it's easy.
*> 0 :: Double
0.0
Last piece of the puzzle is Double -> Integer. Well a brief search on Hoogle shows
truncate
floor
round
-- etc ...
I'll leave that to you to search.

Type coercion in Haskell isn't automatic (or rather, it doesn't actually exist). When you write the literal 20 it's inferred to be of type Num a => a (conceptually anyway. I don't think it works quite like that) and will, depending on the context in which it is used (i.e. what functions you pass it to) be instantiated with an appropitiate type (I believe if no further constraints are applied, this will default to Integer when you need a concrete type at some point). If you need a different kind of Num, you need to convert the numbers e.g. (3* fromIntegral c / 4) in your example.

The type of (/) is Fractional a => a -> a -> a.
To divide Integers, use div instead of (/). Note that the type of div is
div :: Integral a => a -> a -> a
In most top-level languages the compiler works for me -- not the other way around.
I argue that the Haskell compiler works for you just as much, if not more so, than those of other languages you have used. Haskell is a very different language than the traditional imperative languages (such as C, C++, Java, etc.) you are probably used to. This means that the compiler works differently as well.
As others have stated, Haskell will never automatically coerce from one type to another. If you have an Integer which needs to be used as a Float, you need to do the conversion explicitly with fromInteger.

Related

Haskell: What are the types of these expressions (if they have any)?

I'm new to haskell and I am doing some exercises to learn as much as I can about types, but some of the questions are really confusing to me. The exercise I'm struggling with reads:
What are the types of the following expressions? If the expression has no type, do state as much. Also
be sure to declare necessary class restrictions where needed.
5 + 8 :: ?
(+) 2 :: ?
(+2) :: ?
(2+) :: ?
I get that 5 + 8 will return an Int, but the others are not valid expressions by them selves. Does that mean that they have no type, or should i think of them as functions (f :: Int -> Int)(f x = x + 2)?
First, the answers:
5 + 8 has the type forall a. Num a => a which can be specialized to Int.
(+) 2 and (2 +) are the same and both have the type forall a. Num a => a -> a which can be specialized to Int -> Int.
(+ 2) is different but also has the type forall a. Num a => a -> a which can be specialized to Int -> Int.
(+) has the type forall a. Num a => a -> a -> a which can be specialized to Int -> Int -> Int.
For further explanation, read on.
One Literal, Many Types
In Haskell, a numeric literal like 114514 does not have a concrete type like Int. This is good because we have many different types for numbers, incl. Int, Integer, Float, Double and so on, and we do not want to have different notations for each type.
The literals 5, 114514, and 1919810 all have the type
forall a. Num a => a
You can read it like this: "for any type a, if a is an instance of the Num typeclass, then the value can have the type a." Int, Integer, Float and Double are all instances of Num, and because Haskell has (relatively) strong type inference, in different contexts it will be specialized to concrete types like Int.
So what is typeclass?
Typeclasses
The way we express some type "supports" some operation(s) in Haskell is by typeclasses. A typeclass is a set of function signatures, without real implementations. They represent operations we want to make on some types (e.g. Num represents operations we want to make on numeric types), but the actual implementations on different types may differ (the actual calculation of integers and floating point numbers are really different).
We can make a type be an instance of a typeclass (note that this has nothing to do with the instances and classes in object-oriented programming), by actually defining these functions for this type. In this way, we defined this type to support these operations.
Num is one of the typeclasses, which represents the support of numeric operations. It is partially defined as below (I did not put the full one here, in order to reduce verbosity):
class Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
(*) :: a -> a -> a
You can see that in the signatures we have as instead of real concrete types, these functions are said to be polymorphic, that is, they are generic and can be specialized to different types.
For example, if a and b are both Ints, then a + b has type Int too, because haskell inferred that the + we used here should be the one defined for Int, given that both of its arguments are Ints.
So, if some type is an instance of Num, it means that the +, - and * operator is defined for this type. Being an instance of Num means supporting these operators.
Sections
One good thing of Haskell is its (relatively) flexible infix operators. In Haskell, infix operators are nothing but normal functions with an infix notation (which is merely a syntactic sugar). We can also use infix operators in a prefix manner. For example, 5 + 8 is equivalent to (+) 5 8.
It seems that you are confused with (+) 5, (+5) and (5+). Remember that if we put parentheses on both sides of an infix function, we make it prefix. And as you may already know, prefix functions can be partially applied, that is, give the function only some of its parameters, so it becomes a functions with less parameters to be given later. (+) 5 means that we partially applied (+) by only giving its first argument, so it becomes a function waiting for another one argument, or originally its second argument. We can apply (+) 5 to 8 so it becomes ((+) 5) 8, which is equivalent to 5 + 8.
On the other hand, (5+) and (+5) are called sections, which are another syntactic sugar for infix operators. (5+) means you filled the left hand side of the operator, and it becomes a function waiting for its right hand side. (5+) 8 means 5 + 8 or (+) 5 8. (+5) is flipped, i.e. you filled the right hand side, so it is a function waiting for the left hand side. (+5) 8 means 8 + 5 or (+) 8 5.
Haskell is a language very different from other languages you may have learned; every expression that compiles has a type. Functions are first-class and every function has a type too. Thinking in types will really help in your learning progress.
In Haskell:
operators are just functions
functions can be provided less arguments then declaration
parenthesis can be used to disambiguate order and components of arguments
Taken together it means that:
(+) Is just + function, and will take 2 more arguments
(1 +) Is function with it's first argument provided and will take one more
(+ 2) Is another function that have is argument provided, but this time second one. It also awaits one more argument

How does the :: operator syntax work in the context of bounded typeclass?

I'm learning Haskell and trying to understand the reasoning behind it's syntax design at the same time. Most of the syntax is beautiful.
But since :: normally is like a type annotation, How is it that this works:
Input: minBound::Int
Output: -2147483648
There is no separate operator: :: is a type annotation in that example. Perhaps the best way to understand this is to consider this code:
main = print (f minBound)
f :: Int -> Int
f = id
This also prints -2147483648. The use of minBound is inferred to be an Int because it is the parameter to f. Once the type has been inferred, the value for that type is known.
Now, back to:
main = print (minBound :: Int)
This works in the same way, except that minBound is known to be an Int because of the type annotation, rather than for some more complex reason. The :: isn't some binary operation; it just directs the compiler that the expression minBound has the type Int. Once again, since the type is known, the value can be determined from the type class.
:: still means "has type" in that example.
There are two ways you can use :: to write down type information. Type declarations, and inline type annotations. Presumably you've been used to seeing type declarations, as in:
plusOne :: Integer -> Integer
plusOne = (+1)
Here the plusOne :: Integer -> Integer line is a separate declaration about the identifier plusOne, informing the compiler what its type should be. It is then actually defined on the following line in another declaration.
The other way you can use :: is that you can embed type information in the middle of any expression. Any expression can be followed by :: and then a type, and it means the same thing as the expression on its own except with the additional constraint that it must have the given type. For example:
foo = ('a', 2) :: (Char, Integer)
bar = ('a', 2 :: Integer)
Note that for foo I attached the entire expression, so it is very little different from having used a separate foo :: (Char, Integer) declaration. bar is more interesting, since I gave a type annotation for just the 2 but used that within a larger expression (for the whole pair). 2 :: Integer is still an expression for the value 2; :: is not an operator that takes 2 as input and computes some result. Indeed if the 2 were already used in a context that requires it to be an Integer then the :: Integer annotation changes nothing at all. But because 2 is normally polymorphic in Haskell (it could fit into a context requiring an Integer, or a Double, or a Complex Float) the type annotation pins down that the type of this particular expression is Integer.
The use is that it avoids you having to restructure your code to have a separate declaration for the expression you want to attach a type to. To do that with my simple example would have required something like this:
two :: Integer
two = 2
baz = ('a', two)
Which adds a relatively large amount of extra code just to have something to attach :: Integer to. It also means when you're reading bar, you have to go read a whole separate definition to know what the second element of the pair is, instead of it being clearly stated right there.
So now we can answer your direct question. :: has no special or particular meaning with the Bounded type class or with minBound in particular. However it's useful with minBound (and other type class methods) because the whole point of type classes is to have overloaded names that do different things depending on the type. So selecting the type you want is useful!
minBound :: Int is just an expression using the value of minBound under the constraint that this particular time minBound is used as an Int, and so the value is -2147483648. As opposed to minBound :: Char which is '\NUL', or minBound :: Bool which is False.
None of those options mean anything different from using minBound where there was already some context requiring it to be an Int, or Char, or Bool; it's just a very quick and simple way of adding that context if there isn't one already.
It's worth being clear that both forms of :: are not operators as such. There's nothing terribly wrong with informally using the word operator for it, but be aware that "operator" has a specific meaning in Haskell; it refers to symbolic function names like +, *, &&, etc. Operators are first-class citizens of Haskell: we can bind them to variables1 and pass them around. For example I can do:
(|+|) = (+)
x = 1 |+| 2
But you cannot do this with ::. It is "hard-wired" into the language, just as the = symbol used for introducing definitions is, or the module Main ( main ) where syntax for module headers. As such there are lots of things that are true about Haskell operators that are not true about ::, so you need to be careful not to confuse yourself or others when you use the word "operator" informally to include ::.
1 Actually an operator is just a particular kind of variable name that is applied by writing it between two arguments instead of before them. The same function can be bound to operator and ordinary variables, even at the same time.
Just to add another example, with Monads you can play a little like this:
import Control.Monad
anyMonad :: (Monad m) => Int -> m Int
anyMonad x = (pure x) >>= (\x -> pure (x*x)) >>= (\x -> pure (x+2))
$> anyMonad 4 :: [Int]
=> [18]
$> anyMonad 4 :: Either a Int
=> Right 18
$> anyMonad 4 :: Maybe Int
=> Just 18
it's a generic example telling you that the functionality may change with the type, another example:

How does equality work for numeric types?

I see that Haskell allows different numeric types to be compared:
*Main> :t 3
3 :: Num t => t
*Main> :t 3.0
3.0 :: Fractional t => t
*Main> 3 == 3.0
True
Where is the source code for the Eq instance for numeric types? If I create a new type, such as ComplexNumber, can I extend == to work for it? (I might want complex numbers with no imaginary parts to be potentially equal to real numbers.)
“Haskell allows different numeric types to be compared” no it doesn't. What Haskell actually allows is different types to be defined by the same literals. In particular, you can do
Prelude> let a = 3.7 :: Double
Prelude> let b = 1 :: Double
Prelude> a + b
4.7
OTOH, if I declared these explicitly with conflicting types, the addition would fail:
Prelude> let a = 3.7 :: Double
Prelude> let b = 1 :: Int
Prelude> a + b
<interactive>:31:5:
Couldn't match expected type ‘Double’ with actual type ‘Int’
In the second argument of ‘(+)’, namely ‘b’
In the expression: a + b
Now, Double is not the most general possible type for either a or b. In fact all number literals are polymorphic, but before any operation (like equality comparison) happens, such a polymorphic type needs to be pinned down to a concrete monomorphic one. Like,
Prelude> (3.0 :: Double) == (3 :: Double)
True
Because ==, contrary to your premise, actually requires both sides to have the same type, you can omit the signature on either side without changing anything:
Prelude> 3.0 == (3 :: Double)
True
In fact, even without any type annotation, GHCi will still treat both sides as Double. This is because of type defaulting – in this particular case, Fractional is the strongest constraint on the shared number type, and for Fractional, the default type is Double. OTOH, if both sides had been integral literals, then GHCi would have chosen Integer. This can sometimes make a difference, for instance
Prelude> 10000000000000000 == 10000000000000001
False
but
Prelude> 10000000000000000 ==(10000000000000001 :: Double)
True
because in the latter case, the final 1 is lost in the floating-point error.
There is nothing magical going on here. 3 can be of either a real number or an integer, but its type gets unified with a real number when compared to 3.0.
Note the type class:
class Eq a where
eq :: a -> a -> Bool
So eq really does only compare things of same type. And your example 3 == 3.0 gets its types unified and becomes 3.0 == 3.0 internally.
I'm unsure of any type tricks to make it unify with a user defined complex number type. My gut tells me it can not be done.

Type signature of num to double?

I'm just starting Learn You a Haskell for Great Good, and I'm having a bit of trouble with type classes. I would like to create a function that takes any number type and forces it to be a double.
My first thought was to define
numToDouble :: Num -> Double
But I don't think that worked because Num isn't a type, it's a typeclass (which seems to me to be a set of types). So looking at read, shows (Read a) => String -> a. I'm reading that as "read takes a string, and returns a thing of type a which is specified by the user". So I wrote the following
numToDouble :: (Num n) => n -> Double
numToDouble i = ((i) :: Double)
Which looks to me like "take thing of type n (must be in the Num typeclass, and convert it to a Double". This seems reasonable becuase I can do 20::Double
This produces the following output
Could not deduce (n ~ Double)
from the context (Num n)
bound by the type signature for numToDouble :: Num n => n -> Double
I have no idea what I'm reading. Based on what I can find, it seems like this has something to do with polymorphism?
Edit:
To be clear, my question is: Why isn't this working?
The reason you can say "20::Double" is that in Haskell an integer literal has type "Num a => a", meaning it can be any numeric type you like.
You are correct that a typeclass is a set of types. To be precise, it is the set of types that implement the functions in the "where" clause of the typeclass. Your type signature for your numToDouble correctly expresses what you want to do.
All you know about a value of type "n" in your function is that it implements the Num interface. This consists of +, -, *, negate, abs, signum and fromInteger. The last is the only one that does type conversion, but its not any use for what you want.
Bear in mind that Complex is also an instance of Num. What should numToDouble do with that? The Right Thing is not obvious, which is part of the reason you are having problems.
However lower down the type hierarchy you have the Real typeclass, which has instances for all the more straightforward numerical types you probably want to work with, like floats, doubles and the various types of integers. That includes a function "toRational" which converts any real value into a ratio, from which you can convert it to a Double using "fromRational", which is a function of the "Fractional" typeclass.
So try:
toDouble :: (Real n) => n -> Double
toDouble = fromRational . toRational
But of course this is actually too specific. GHCI says:
Prelude> :type fromRational . toRational
fromRational . toRational :: (Fractional c, Real a) => a -> c
So it converts any real type to any Fractional type (the latter covers anything that can do division, including things that are not instances of Real, like Complex) When messing around with numeric types I keep finding myself using it as a kind of generic numerical coercion.
Edit: as leftaroundabout says,
realToFrac = fromRational . toRational
You can't "convert" anything per se in Haskell. Between specific types, there may be the possibility to convert – with dedicated functions.
In your particular example, it certainly shouldn't work. Num is the class1 of all types that can be treated as numerical types, and that have numerical values in them (at least integer ones, so here's one such conversion function fromInteger).
But these types can apart from that have any other stuff in them, which oftentimes is not in the reals and can thus not be approximated by Double. The most obvious example is Complex.
The particular class that has only real numbers in it is, suprise, called Real. What is indeed a bit strange is that its method is a conversion toRational, since the rationals don't quite cover the reals... but they're dense within them, so it's kind of ok. At any rate, you can use that function to implement your desired conversion:
realToDouble :: Real n => n -> Double
realToDouble i = fromRational $ toRational i
Incidentally, that combination fromRational . toRational is already a standard function: realToFrac, a bit more general.
Calling type classes "sets of types" is kind of ok, much like you can often get away without calling any kind of collection in maths a set – but it's not really correct. The most problematic thing is, you can't really say some type is not in a particular class: type classes are open, so at any place in a project you could declare an instance for some type to a given class.
Just to be 100% clear, the problem is
(i) :: Double
This does not convert i to a Double, it demands that i already is a Double. That isn't what you mean at all.
The type signature for your function is correct. (Or at least, it means exactly what you think it means.) But your function's implementation is wrong.
If you want to convert one type of data to another, you have to actually call a function of some sort.
Unfortunately, Num itself only allows you to convert an Integer to any Num instance. You're trying to convert something that isn't necessarily an Integer, so this doesn't help. As others have said, you probably want fromRational or similar...
There is no such thing as numeric casts in Haskell. When you write i :: Double, what that means isn't "cast i to Double"; it's just an assertion that i's type is Double. In your case, however, your function's signature also asserts that i's type is Num n => n, i.e., any type n (chosen by the caller) that implements Num; so for example, n could be Integer. Those two assertions cannot be simultaneously true, hence you get an error.
The confusing thing is that you can say 1 :: Double. But that's because in Haskell, a numeric literal like 1 has the same meaning as fromInteger one, where one :: Integer is the Integer whose value is one.
But that only works for numeric literals. This is one of the surprising things if you come to Haskell from almost any other language. In most languages you can use expressions of mixed numeric types rather freely and rely on implicit coercions to "do what I mean"; in Haskell, on the other hand you have to use functions like fromIntegral or fromRational all the time. And while most statically typed languages have a syntax for casting from one numeric type to another, in Haskell you just use a function.

Why can't I add Integer to Double in Haskell?

Why is it that I can do:
1 + 2.0
but when I try:
let a = 1
let b = 2.0
a + b
<interactive>:1:5:
Couldn't match expected type `Integer' with actual type `Double'
In the second argument of `(+)', namely `b'
In the expression: a + b
In an equation for `it': it = a + b
This seems just plain weird! Does it ever trip you up?
P.S.: I know that "1" and "2.0" are polymorphic constants. That is not what worries me. What worries me is why haskell does one thing in the first case, but another in the second!
The type signature of (+) is defined as Num a => a -> a -> a, which means that it works on any member of the Num typeclass, but both arguments must be of the same type.
The problem here is with GHCI and the order it establishes types, not Haskell itself. If you were to put either of your examples in a file (using do for the let expressions) it would compile and run fine, because GHC would use the whole function as the context to determine the types of the literals 1 and 2.0.
All that's happening in the first case is GHCI is guessing the types of the numbers you're entering. The most precise is a Double, so it just assumes the other one was supposed to be a Double and executes the computation. However, when you use the let expression, it only has one number to work off of, so it decides 1 is an Integer and 2.0 is a Double.
EDIT: GHCI isn't really "guessing", it's using very specific type defaulting rules that are defined in the Haskell Report. You can read a little more about that here.
The first works because numeric literals are polymorphic (they are interpreted as fromInteger literal resp. fromRational literal), so in 1 + 2.0, you really have fromInteger 1 + fromRational 2, in the absence of other constraints, the result type defaults to Double.
The second does not work because of the monomorphism restriction. If you bind something without a type signature and with a simple pattern binding (name = expresion), that entity gets assigned a monomorphic type. For the literal 1, we have a Num constraint, therefore, according to the defaulting rules, its type is defaulted to Integer in the binding let a = 1. Similarly, the fractional literal's type is defaulted to Double.
It will work, by the way, if you :set -XNoMonomorphismRestriction in ghci.
The reason for the monomorphism restriction is to prevent loss of sharing, if you see a value that looks like a constant, you don't expect it to be calculated more than once, but if it had a polymorphic type, it would be recomputed everytime it is used.
You can use GHCI to learn a little more about this. Use the command :t to get the type of an expression.
Prelude> :t 1
1 :: Num a => a
So 1 is a constant which can be any numeric type (Double, Integer, etc.)
Prelude> let a = 1
Prelude> :t a
a :: Integer
So in this case, Haskell inferred the concrete type for a is Integer. Similarly, if you write let b = 2.0 then Haskell infers the type Double. Using let made Haskell infer a more specific type than (perhaps) was necessary, and that leads to your problem. (Someone with more experience than me can perhaps comment as to why this is the case.) Since (+) has type Num a => a -> a -> a, the two arguments need to have the same type.
You can fix this with the fromIntegral function:
Prelude> :t fromIntegral
fromIntegral :: (Num b, Integral a) => a -> b
This function converts integer types to other numeric types. For example:
Prelude> let a = 1
Prelude> let b = 2.0
Prelude> (fromIntegral a) + b
3.0
Others have addressed many aspects of this question quite well. I'd like to say a word about the rationale behind why + has the type signature Num a => a -> a -> a.
Firstly, the Num typeclass has no way to convert one artbitrary instance of Num into another. Suppose I have a data type for imaginary numbers; they are still numbers, but you really can't properly convert them into just an Int.
Secondly, which type signature would you prefer?
(+) :: (Num a, Num b) => a -> b -> a
(+) :: (Num a, Num b) => a -> b -> b
(+) :: (Num a, Num b, Num c) => a -> b -> c
After considering the other options, you realize that a -> a -> a is the simplest choice. Polymorphic results (as in the third suggestion above) are cool, but can sometimes be too generic to be used conveniently.
Thirdly, Haskell is not Blub. Most, though arguably not all, design decisions about Haskell do not take into account the conventions and expectations of popular languages. I frequently enjoy saying that the first step to learning Haskell is to unlearn everything you think you know about programming first. I'm sure most, if not all, experienced Haskellers have been tripped up by the Num typeclass, and various other curiosities of Haskell, because most have learned a more "mainstream" language first. But be patient, you will eventually reach Haskell nirvana. :)

Resources