Using List Comprehension in place of Recursion - haskell

I am curious whether or not using list comprehension in place of recursion is possible for the following example.
The function replaceFirst that takes in an an element and a list and replaces the first occurrence of the element from the list.
This can be done using recursion as follows:
replaceFirst _ [] = []
replaceFirst elem y (x:xs) | x==y = (elem:xs)
| otherwise = x:replaceFirst elem y xs
My question is, can this recursive function, or a similar recursive function that operates on the first occurrence of an element in a list, be replaced with a list comprehension function? Why or why not? (I am more concerned with the reasoning than the actual code).

List comprehensions are syntactic sugar for various forms of map, filter, and concatMap. If your recursive function can be described in terms of these, then you can rewrite it to a list comprehension. They can't short circuit, as you do above, nor can they pass accumulating state.
Your replaceFirst would seem to require an accumulator to "tell" later elements in the list about the appearance of earlier elements. I think this makes it difficult or impossible to write using only list comprehension syntax.

List comprehension, inspired by leftaroundabout:
replaceFirst elem y xs = [a | let b = break (==y) xs
c = if not (null $ snd b)
then fst b ++ [elem] ++ tail (snd b)
else fst b
, a <- c]

Related

I don't see what does "even" in the piece of code do?

ghci> let xxs=[[1,3,5,2,3,1,2,4,5],[1,2,3,4,5,6,7,8,9],[1,2,4,2,1,6,3,1,3,2,3,6]]
ghci> [[x|x<- xs,even x]|xs<- xxs]
[[2,2,4],[2,4,6,8],[2,4,2,6,2,6]]
This piece of code relates to list comprehension. But i don't see how the program goes with "even"
A Haskell list comprehension expression has three types of elements at the right side of the list comprehension:
generators, of the form var <- list-expr;
filters of the form bool-expr; and
local definitions of the form let var = expr.
The even x part is thus a filter. It means that only if the filter is satisfied, so even x results in True, that element is a candidate for the rest of the list comprehension and thus eventually result in a branch of elements added to the list.
So here the expression thus has two components:
[x | x <- xs, even x ]
-- \__ __/ \__ _/
-- v v
-- generator filter
we thus iterate over the elements in xs and then for each element check if that element is even, if it is, we add x to the result.
The above can however be written as just:
filter even xs
which basically describe what we do here: we filter a list xs such that the result is a list that only contains the elements of xs that are even.

How to create Haskell function that returns every third element from a list of ints

I want to create a function that returns every third int from a list of ints without using any predefined functions. For example, everyThird [1,2,3,4,5] --> [1,4]
everyThird:: [a] -> [a]
Could I just continue to iterate over the list using tail and appending to a new list every third call? I am new to Haskell and very confused with all of this
One other way of doing this is to handle three different base cases, in all of which we're at the end of the list and the list is less than three elements long, and one recursive case, where the list is at least three elements long:
everyThird :: [a] -> [a]
everyThird [] = []
everyThird [x] = [x]
everyThird [x, _] = [x]
everyThird (x:_:_:xs) = x:everyThird xs
You want to do exactly what you said: iterate over the list and include the element only on each third call. However, there's a problem. Haskell is a funny language where the idea of "changing" a variable doesn't make sense, so the usual approach of "have a counter variable i which tells us whether we're on the third element or not" won't work in the usual way. Instead, we'll create a recursive helper function to maintain the count for us.
everyThird :: [Int] -> [Int]
everyThird xs = helper 0 xs
where helper _ [] = []
helper 0 (x : xs) = x : helper 2 xs
helper n (_ : xs) = helper (n - 1) xs
We have three cases in the helper.
If the list is empty, stop and return the empty list.
If the counter is at 0 (that is, if we're on the third element), make a list starting with the current element and ending with the rest of the computation.
If the counter is not at zero, count down and continue iteration.
Because of the way pattern matching works, it will try these three statements in order.
Notice how we use an additional argument to be the counter variable since we can't mutate the variable like we would in an imperative language. Also, notice how we construct the list recursively; we never "append" to an existing list because that would imply that we're mutating the list. We simply build the list up from scratch and end up with the correct result on the first go round.
Haskell doesn't have classical iteration (i.e. no loops), at least not without monads, but you can use similar logic as you would in a for loop by zipping your list with indexes [0..] and applying appropriate functions from Data.List.
E.g. What you need to do is filter every third element:
everyThirdWithIndexes list = filter (\x -> snd x `mod` 3 == 0) $ zip list [0..]
Of course you have to get rid of the indexes, there are two elegant ways you can do this:
everyThird list = map (fst) . everyThirdWithIndexes list
-- or:
everyThird list = fst . unzip . everyThirdWithIndexes list
If you're not familiar with filter and map, you can define a simple recursion that builds a list from every first element of a list, drops the next two and then adds another from a new function call:
everyThird [] = [] -- both in case if the list is empty and the end case
everyThird (x:xs) = x : everyThird (drop 2 xs)
EDIT: If you have any questions about these solutions (e.g. some syntax that you are not familiar with), feel free to ask in the comments. :)
One classic approach:
everyThird xs = [x | (1,x) <- zip (cycle [1..3]) xs]
You can also use chunksOf from Data.List.Split to seperate the lists into chunks of 3, then just map the first element of each:
import Data.List.Split
everyThird :: [a] -> [a]
everyThird xs = map head $ chunksOf 3 xs
Which works as follows:
*Main> everyThird [1,2,3,4,5]
[1,4]
Note: You may need to run cabal install split to use chunksOf.

separate List by heads

I have problems trying to separate a list follows, suppose we have the following lists
[[1,2,3,4], [5,6,7,8], [9,10,11,12 ], [13,14,15,16,17]].
The result should be:
[[1,5,9,13] [2,6,10,14] [3,7,11,16] [4,8,12,16]]
I'm trying to do it the following way:
joinHead (x: xs) = map head (x: xs)
separateLists (x: xs) = xs joinHead x ++ separateLists
obviously this does not work. I hope you can help me. thx.
I adapted the functions you wrote, joinHead and separateLists, to make the code work, while preserving the logic you were following. From what I could infer looking at these functions, the idea was to use joinHead to extract the first element of each child list and return a new list. Then, this new list should be inserted in the front of a list of lists returned from calling separateLists recursively.
Here is the new definition of joinHead:
joinHead :: [[a]] -> [a]
joinHead ([]:_) = []
joinHead xs = map head xs
Note that the first line checks, through pattern matching, whether the first list contained in the list of lists is empty and, if so, returns an empty list ([]). The reasons for that are two:
The function head is unsafe. That means that calling head on an empty list will cause an exception to be thrown (try running in GHCi head []);
For simplicity, I'm assuming that all the lists were already checked to have the same length (length (xs !! 0) == length (xs !! 1) ...).
The definition of separateLists is as follows:
separateLists :: [[a]] -> [[a]]
separateLists ([]:_) = []
separateLists ([x]:xs) = [joinHead ([x]:xs)]
separateLists xs = joinHead xs : separateLists (map tail xs)
Again, the first two definitions are necessary for both stopping the recursion and safety purposes. The first line says: "if the first list is empty, then all the elements of all lists were already consumed, so return []". The second line says: "if the first line has exactly one element, then just call joinHead and return the result wrapped in a list". Note that in the third definition we have a call to tail which, like head, throws exceptions when called on []. That's the reason of why we need a separate case for lists of length 1. Finally, the third line, which is executed for lists of length greater than 1, gets a list from joinHead xs and insert it (using the "cons" operator (:)) in the beginning of the list returned from recursively calling separateLists. In this call, we have to take out the first elements of all the lists, that's why we use map tail xs.
Now, running:
λ: let list = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16,17]]
λ: separateLists list
[[1,5,9,13],[2,6,10,14],[3,7,11,15],[4,8,12,16]]
will give you the expected results. I hope it was clear enough. As a final note, I want to point out that this implementation is far from being optimal and, as suggested in the comments, you should probably use the standard Data.List.transpose. As an exercise and didatic example, it's fine! ;-)

what does this function do in Haskell?

what does this function in Haskel do ?
I don't understand the way the recursion works here
f[]=[]
f(x:xs)=x: [y|y <- f xs, x/=y]
f[]=[]
f(x:xs) = x : [y|y <- f xs, x/=y]
This function removes duplicates from a list. Here's how it works:
Base case, the list is empty, so it returns the empty list.
Otherwise you take the first element x, and assume (inductive hypothesis) that f xs gives you the list without duplicates. Now, the only thing you have to do is make sure that you don't insert x again. So, the list comprension means: take all the rest of the elements (which by inductive hypothesis are unique), but remove the x.
Does it feel right now?
ps. you can write the second clause also as:
f(x:xs) = x : filter (/= x) (f xs)
Seems to me that it eliminates any duplicate entries in the list.
Here's how it works:
f[] = [] means that, when the input is an empty list, the output will be an empty list.
Then, f(x:xs) = x: [y|y <- f xs, x/=y] uses what's called a list comprehension. It takes the head of the input list, and then appends the list comprehension.
The list comprehension reads like this: "y such that y is in f(xs), and y doesn't equal x"
So it's the list of elements in f(xs) that don't equal the head element.

Haskell: Minimum sum of list

So, I'm new here, and I would like to ask 2 questions about some code:
Duplicate each element in list by n times. For example, duplicate [1,2,3] should give [1,2,2,3,3,3]
duplicate1 xs = x*x ++ duplicate1 xs
What is wrong in here?
Take positive numbers from list and find the minimum positive subtraction. For example, [-2,-1,0,1,3] should give 1 because (1-0) is the lowest difference above 0.
For your first part, there are a few issues: you forgot the pattern in the first argument, you are trying to square the first element rather than replicate it, and there is no second case to end your recursion (it will crash). To help, here is a type signature:
replicate :: Int -> a -> [a]
For your second part, if it has been covered in your course, you could try a list comprehension to get all differences of the numbers, and then you can apply the minimum function. If you don't know list comprehensions, you can do something similar with concatMap.
Don't forget that you can check functions on http://www.haskell.org/hoogle/ (Hoogle) or similar search engines.
Tell me if you need a more thorough answer.
To your first question:
Use pattern matching. You can write something like duplicate (x:xs). This will deconstruct the first cell of the parameter list. If the list is empty, the next pattern is tried:
duplicate (x:xs) = ... -- list is not empty
duplicate [] = ... -- list is empty
the function replicate n x creates a list, that contains n items x. For instance replicate 3 'a' yields `['a','a','a'].
Use recursion. To understand, how recursion works, it is important to understand the concept of recursion first ;)
1)
dupe :: [Int] -> [Int]
dupe l = concat [replicate i i | i<-l]
Theres a few problems with yours, one being that you are squaring each term, not creating a new list. In addition, your pattern matching is off and you would create am infinite recursion. Note how you recurse on the exact same list as was input. I think you mean something along the lines of duplicate1 (x:xs) = (replicate x x) ++ duplicate1 xs and that would be fine, so long as you write a proper base case as well.
2)
This is pretty straight forward from your problem description, but probably not too efficient. First filters out negatives, thewn checks out all subtractions with non-negative results. Answer is the minumum of these
p2 l = let l2 = filter (\x -> x >= 0) l
in minimum [i-j | i<-l2, j<-l2, i >= j]
Problem here is that it will allow a number to be checkeed against itself, whichwiull lend to answers of always zero. Any ideas? I'd like to leave it to you, commenter has a point abou t spoon-feeding.
1) You can use the fact that list is a monad:
dup = (=<<) (\x -> replicate x x)
Or in do-notation:
dup xs = do x <- xs; replicate x x; return x
2) For getting only the positive numbers from a list, you can use filter:
filter (>= 0) [1,-1,0,-5,3]
-- [1,0,3]
To get all possible "pairings" you can use either monads or applicative functors:
import Control.Applicative
(,) <$> [1,2,3] <*> [1,2,3]
[(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)]
Of course instead of creating pairs you can generate directly differences when replacing (,) by (-). Now you need to filter again, discarding all zero or negative differences. Then you only need to find the minimum of the list, but I think you can guess the name of that function.
Here, this should do the trick:
dup [] = []
dup (x:xs) = (replicate x x) ++ (dup xs)
We define dup recursively: for empty list it is just an empty list, for a non empty list, it is a list in which the first x elements are equal to x (the head of the initial list), and the rest is the list generated by recursively applying the dup function. It is easy to prove the correctness of this solution by induction (do it as an exercise).
Now, lets analyze your initial solution:
duplicate1 xs = x*x ++ duplicate1 xs
The first mistake: you did not define the list pattern properly. According to your definition, the function has just one argument - xs. To achieve the desired effect, you should use the correct pattern for matching the list's head and tail (x:xs, see my previous example). Read up on pattern matching.
But that's not all. Second mistake: x*x is actually x squared, not a list of two values. Which brings us to the third mistake: ++ expects both of its operands to be lists of values of the same type. While in your code, you're trying to apply ++ to two values of types Int and [Int].
As for the second task, the solution has already been given.
HTH

Resources