Running query on database after a document/row is of certain age - node.js

What is the best practice for running a database-query after any document in a collection become of certain age?
Let's say this is a node.js web-system with mongoDB, with a collection of posts. After a new post is inserted, it should be updated with some data after 60 minutes.
Would a cron-job that checks all posts with (age < one hour) every minute or two be the best solution? What would be the least stressing solution if this system has >10.000 active users?

Some ideas:
Create a second collection as a queue with a "time to update" field which would contain the time at which the source record needs to be updated. Index it, and scan through looking for values older than "now".
Include the field mentioned above in the original document and index it the same way
You could just clear the value when done or reset it to the next 60 minutes depending on behavior (rather than inserting/deleting/inserting documents into the collection).
By keeping the update-collection distinct, you have a better chance of always keeping the entire working set of queued updates in memory (compared to storing the update info in your posts).
I'd kick off the update not as a web request to the same instance of Node but instead as a separate process so as to not block user-requests.
As to how you schedule it -- that's up to you and your architecture and what's best for your system. There's no right "best" answer, especially if you have multiple web servers or a sharded data system.
You might use a capped collection, although you'd run the risk of potentially losing records needing to be updated (although you'd gain performance)

Related

Mongodb, can i trigger secondary replication only at the given time or manually?

I'm not a mongodb expert, so I'm a little unsure about server setup now.
I have a single instance running mongo3.0.2 with wiredtiger, accepting both read and write ops. It collects logs from client, so write load is decent. Once a day I want to process this logs and calculate some metrics using aggregation framework, data set to process is something like all logs from last month and all calculation takes about 5-6 hours.
I'm thinking about splitting write and read to avoid locks on my collections (server continues to write logs while i'm reading, newly written logs may match my queries, but i can skip them, because i don't need 100% accuracy).
In other words, i want to make a setup with a secondary for read, where replication is not performing continuously, but starts in a configured time or better is triggered before all read operations are started.
I'm making all my processing from node.js so one option i see here is to export data created in some period like [yesterday, today] and import it to read instance by myself and make calculations after import is done. I was looking on replica set and master/slave replication as possible setups but i didn't get how to config it to achieve the described scenario.
So maybe i wrong and miss something here? Are there any other options to achieve this?
Your idea of using a replica-set is flawed for several reasons.
First, a replica-set always replicates the whole mongod instance. You can't enable it for individual collections, and certainly not only for specific documents of a collection.
Second, deactivating replication and enabling it before you start your report generation is not a good idea either. When you enable replication, the new slave will not be immediately up-to-date. It will take a while until it has processed the changes since its last contact with the master. There is no way to tell how long this will take (you can check how far a secondary is behind the primary using rs.status() and comparing the secondaries optimeDate with its lastHeartbeat date).
But when you want to perform data-mining on a subset of your documents selected by timespan, there is another solution.
Transfer the documents you want to analyze to a new collection. You can do this with an aggregation pipeline consisting only of a $match which matches the documents from the last month followed by an $out. The out-operator specifies that the results of the aggregation are not sent to the application/shell, but instead written to a new collection (which is automatically emptied before this happens). You can then perform your reporting on the new collection without locking the actual one. It also has the advantage that you are now operating on a much smaller collection, so queries will be faster, especially those which can't use indexes. Also, your data won't change between your aggregations, so your reports won't have any inconsistencies between them due to data changing between them.
When you are certain that you will need a second server for report generation, you can still use replication and perform the aggregation on the secondary. However, I would really recommend you to build a proper replica-set (consisting of primary, secondary and an arbiter) and leave replication active at all times. Not only will that make sure that your data isn't outdated when you generate your reports, it also gives you the important benefit of automatic failover should your primary go down for some reason.

Dynamodb infrequently scheduled scan

I am implementing a session table with nodejs which will grow to a huge number of items. each hash key is a uuid representing a user.
In order to delete the expired sessions, I must scan the table for expired attribute and delete old sessions. I am planning to do this scan once a few days, and other than that, I don't really need high read capacity.
I came out with 2 solutions, and i would like to hear some feedback about them.
1) UpdateTable to higher capacities for only that scheduled routine, and after the scan is done, simply reduce the table capacities to it's original values.
2) Perform the scan, and when retrieving the 'LastEvaluatedKey' after an x*MB read, create a initiation delay (for not consuming all read/sec units), and then continue the scan with 'ExclusiveStartKey'.
If you're doing a scan, option 1 is your best best. This is the only real way to guarantee that you won't effect your application performance while the scan is ongoing.
The only thing you need to be sure of is that you only run this operation once a day -- I believe you can only DOWNGRADE throughput units on a DynamoDB table 2x's per day (at most).
This is an old question, but I saw it through a related question.
There is now a much better native solution: DynamoDB Time to Live
It allows you to specify one attribute per table that serves as the time to live value for each item. You can then set the attribute per item with a Unix-Timestamp that specifies when the item should be deleted.
Within about 24 hours of that timestamp, the item will be deleted at no additional charge.

Frequent Updates to Solr Documents - Efficiency/Scalability concerns

I have a Solr index with document fields something like:
id, body_text, date, num_upvotes, num_downvotes
In my application, a document is created with some integer id and some body_text (500 chars max). The date is set to the time of input, and num_upvotes and num_downvotes begin at 0.
My application gives users the ability to upvote and downvote the content mentioned above, and the reason I want to keep track of this in Solr instead of just the DB is that I want to be able to consider the number of upvotes and downvotes into my search.
This is a problem because you can't simply update a solr document (i.e. increment number of up_votes) and you must replace the entire document, which is probably fairly inefficient considering it would require hitting my DB to grab all the relevant data again.
I realize the solution may require a different layout of data, or possibly multiple indexes (although I don't know if you can query/score across solr cores).
Is anyone able to offer any recommendations on how to tackle this?
A solution that I use in a similar problem is to update that information in database and do SOLR Updates/Inserts every ten minutes using the documents that were modified since the last update.
Also every night, when I don't have much traffic I do index optimize.
After each import I set up some warm-up queries in SOLR config.
In my SOLR index I have around 1.5 milion documents,each document has 24 fields, and around 2000 characters in the entire document.
I update the index every 10 minutes around 500 documents ( without optimizing the index ), and I do around 50 warmup queries comprised of most common facets, most used filter queries and free text search.
I don't get negative impact on performance. ( at least it is not visible ) - my queries run average in 0.1 seconds. ( before doing update at every 10 minutes average queries were 0.09 seconds)
LATER EDIT:
I didn't encounter any problems during this updates. I allways take the documents from database and insert them with a Unique key to SOLR. If the document exist in SOLR it is replaced ( this is what I mean by update).
It never takes more than 3 minutes to update SOLR. Actually I am doing 10 minutes break after each update. So I start the update of the index, I wait for it to finish, and then I wait another 10 minutes to start again.
I did not look on the performance over the night, but for me it is not relevant, as I want to have fresh information of data during the users visits peaks.
The Join feature would help you here. Then you could store the up/down votes in a separate document.
The bad news is that you need to wait until Solr 4 unless you're comfortable running with a trunk build.
If you are only going to be updating the up/down votes. Instead of going back to the database, just use the appropriate Solr Client for your application and pull the document from the index, set the up/down values as needed and then reinsert the document back into the index.
There is no solution to your problem within SOLR. You have a database problem and you are trying to solve it with a search engine.
The best way to deal with this is to keep a redis database that records the document id from SOLR and the up/down vote counts. Then your app can merge the data from both sources before displaying.

Users last-access time with CouchDB

I am new to CouchDB, but that is not related to the problem. The question is simple, yet not clear to me.
For example: Boris was on the site 5 seconds ago and viewing his profile Ivan sees it.
How to correctly implement this feature (users last-access time)?
The problem is that, if we update users profile document in CouchDB, for ex. property last_access_time, each time a page is refreshed, than we will have the most relevant information (with MySQL we did it this way), but on the other hand, we will have _rev of the document somewhere about 100000++ by the end of the day.
So, how do you do that or do you have any ideas?
This is not a full answer but a possible optimization. It will work in addition to any other answers here.
Instead of storing the latest timestamp, update the timestamp only if it has changed by e.g. 5 seconds, or 60 seconds.
Assume a user refreshes every second for a day. That is 86,400 updates. But if you only update the timestamp at 5-second intervals, that is 17,280; for 60-seconds it is 1,440.
You can do this on the client side. When you want to update the timestamp, fetch the current document and check the old timestamp. If it is less than 5 seconds old, don't do anything. Otherwise, update it normally.
You can also do it on the server side. Write an _update function in CouchDB, which you can query like e.g. POST /db/_design/my_app/_update/last-access/the_doc_id?time=2011-01-31T05:05:31.872Z. The update function will do the same thing: check the old timestamp, and either do nothing, or update it, depending on the elapsed time.
If there was (a large) part of a document that is relatively static, and (a small) part that is highly dynamic, I would consider splitting it into two different documents.
Another option might be to use something more suited to the high write throughput of small pieces of data of that nature such as Redis or possibly MongoDB, and (if necessary) have a background task to occasionally write the info to CouchDB.
CouchDB has no problem with rapid document updates. Just do it, like MySQL. High _rev is no problem.
The only thing is, you have to be responsible about your couch from day 1. All CouchDB users must do this anyway, however you may have to do it sooner. (Applications with few updates have lower risk of a full disk, so developers can postpone this work.)
Poll your database and run compaction if it needs it (based on size, document count, seq_id number)
Poll your views and run compaction too
Always have enough disk capacity and i/o bandwidth to support compaction. Mathematical worst-case: you need 2x the database size, and 2x the write speed; however, most applications require less. Since you are updating documents, not adding them, you will need way less.

Solr for constantly updating index

I have a news site with 150,000 news articles. About 250 new articles are added daily to the database at an interval of 5-15 minutes. I understand that Solr is optimized for millions of records and my 150K won't be a problem for it. But I am worried the frequent updation will be a problem, since the cache gets invalidated with every update. In my dev server, cold load of a page takes 5-7 seconds to load (since every page runs a few MLT queries).
Will it help, if I split my index into two - An archive index and a latest index. The archive index will be updated once every day.
Can anyone suggest any ways to optimize my installation for a constantly updating index?
Thanks
My answer is: test it! Don't try to optimize yet if you don't know how it performs. Like you said, 150K is not a lot, it should be quick to build an index of that size for your tests. After that, run a couple of MLT queries from a different concurrent threads (to simulate users) while you index more documents to see how it behaves.
One setting that you should keep an eye on is auto-commit. Since you are indexing constantly, you can't commit at each document (you will bring Solr down). The value that you will choose for this setting will let you tune the latency of the system (how many times it takes for new documents to be returned in results) while keeping the system responsive.
Consider using mlt=true in the main query instead of issuing per-result MoreLikeThis queries. You'll save the roundtrips and so it will be faster.

Resources