Measuring TChan length - haskell

I need to store a buffer of some values in STM. Writer threads need to monitor the buffer's size. I started to implement this thing using TChan but than I found out that the API does not provide a way to measure the length of the channel. Being a one stubborn fella I then implemented the thing myself:
readTChanLength ch = do
empty <- isEmptyTChan ch
if empty
then return 0
else do
value <- readTChan ch
length <- readTChanLength ch
unGetTChan ch value
return $ 1 + length
Now everything works fine, but I am wondering what the reasons for such a trivial thing not to be implemented in the standard library are and what the preferred approach to that sorta problem is. I realize that this algorithm has at least an O(n) complexity, but it can't be the reason, right?

The preferred approach is to keep a counter with the channel, and atomically increment the counter while writing the channel, and decrementing the counter when reading the channel.
Your solution traverses through all element of the channel, which will probably not work well for actual high-concurrent workloads.

Related

Haskell: find out how many bytes a Get expression would consume

I am writing a tool which includes a deserialization mechanism for my bachelor thesis, for which I use the Get Monad (Data.Binary.Get). I ran into the following problem:
During deserialization, there is a part where I have a getter of type Get a and I need to read a ByteString of length n, where n is the amount of bytes that would be consumed if I ran my getter at this position. In other words, I need to know how much bytes my getter would consume without consuming them.
There is a way to do this:
readBytes :: Get a -> Get ByteString
readBytes getter = do safe <- lookAhead getRemainingLazyByteString
let info = runGetOrFail getter safe
-- n_cB = number of consumed bytes
case info of Right (_, n_cB, _) -> getLazyByteString n_cB
But this is hideous beyond description. Every time this method is called, it copies the entire remainder of the file.
Even though this doesn't seem like a hard problem in theory, and so far the Get Monad has been capable of doing everything I needed, I cannot find a better solution.
I need to know how much bytes my getter would consume without
consuming them.
Perhaps you could perform two calls to the bytesRead :: Get Int64 function, the second call inside a lookAhead, after having parsed the a value. Something like
bytesRead1 <- bytesRead
bytesRead2 <- lookAhead (getter *> bytesRead)
return (bytesRead2 - bytesRead1)
I'm not sure about how bytesRead behaves inside lookAhead, however.

STM-friendly list as a change log

I need an advice on the data structure to use as an atomic change log.
I'm trying to implement the following algorithm. There is a flow of incoming
changes updating an in-memory map. In Haskell-like pseudocode it is
update :: DataSet -> SomeListOf Change -> Change -> STM (DataSet, SomeListOf Change)
update dataSet existingChanges newChange = do
...
return (dataSet, existingChanges ++ [newChange])
where DataSet is a map (currently it is the Map from the stm-containers package, https://hackage.haskell.org/package/stm-containers-0.2.10/docs/STMContainers-Map.html). The whole "update" is called from arbitrary number of threads. Some of the Change's can be rejected due to domain semantics, I use throwSTM for that to throw away the effect of the transaction. In case of successful commit the "newChange" is added to the list.
There exists separate thread which calls the following function:
flush :: STM (DataSet, SomeListOf Change) -> IO ()
this function is supposed to take the current snapshot of DataSet together with the list of changes (it has to a consistent pair) and flush it to the filesystem, i.e.
flush data = do
(dataSet, changes) <- atomically $ readTVar data_
-- write them both to FS
-- ...
atomically $ writeTVar data_ (dataSet, [])
I need an advice about the data structure to use for "SomeListOf Change". I don't want to use [Change] because it is "too ordered" and I'm afraid there will be too many conflicts, which will force the whole transaction to retry. Please correct me, if I'm wrong here.
I cannot use the Set (https://hackage.haskell.org/package/stm-containers-0.2.10/docs/STMContainers-Set.html) because I still need to preserve some order, e.g. the order of transaction commits. I could use TChan for it and it looks like a good match (exactly the order of transaction commits), but I don't know how to implement the "flush" function so that it would give the consistent view of the whole change log together with the DataSet.
The current implementation of that is here https://github.com/lolepezy/rpki-pub-server/blob/add-storage/src/RRDP/Repo.hs, in the functions applyActionsToState and rrdpSyncThread, respectively. It uses TChan and seems to do it in a wrong way.
Thank you in advance.
Update: A reasonable answer seems to be like that
type SomeListOf c = TChan [c]
update :: DataSet -> TChan [Change] -> Change -> STM DataSet
update dataSet existingChanges newChange = do
...
writeTChan changeChan $ reverse (newChange : existingChanges)
return dataSet
flush data_ = do
(dataSet, changes) <- atomically $ (,) <$> readTVar data_ <*> readTChan changeChan
-- write them both to FS
-- ...
But I'm still not sure whether it's a neat solution to pass the whole list as an element of the channel.
I'd probably just go with the list and see how far it takes performance-wise. Given that, you should consider that both, appending to the end of a list and reversing it are O(n) operations, so you should try to avoid this. Maybe you can just prepend the incoming changes like this:
update dataSet existingChanges newChange = do
-- ...
return (dataSet, newChange : existingChanges)
Also, your example for flush has the problem that reading and updating the state is not atomic at all. You must accomplish this using a single atomically call like so:
flush data = do
(dataSet, changes) <- atomically $ do
result <- readTVar data_
writeTVar data_ (dataSet, [])
return result
-- write them both to FS
-- ...
You could then just write them out in reverse order (because now changes contains the elements from newest to oldest) or reverse here once if it's important to write them out oldest to newest. If that's important I'd probably go with some data structure which allows O(1) element access like a good old vector.
When using a fixed-size vector you would obviously have to deal with the problem that it can become "full" which would mean your writers would have to wait for flush to do it's job before adding fresh changes. That's why I'd personally go for the simple list first and see if it's sufficient or where it needs to be improved.
PS: A dequeue might be a good fit for your problem as well, but going fixed size forces you to deal with the problem that your writers can potentially produce more changes than your reader can flush out. The dequeue can grow infinitely, but you your RAM probably isn't. And the vector has pretty low overhead.
I made some (very simplistic) investigation
https://github.com/lolepezy/rpki-pub-server/tree/add-storage/test/changeLog
imitating exactly the type of load I supposedly going to have. I used the same STMContainers.Map for the data set and usual list for the change log. To track the number of transaction retries, I used Debug.Trace.trace, meaning, the number of lines printed by trace. And the number of unique lines printed by trace gives me the number of committed transactions.
The result is here (https://github.com/lolepezy/rpki-pub-server/blob/add-storage/test/changeLog/numbers.txt). The first column is the number of threads, the second is the number of change sets generated in total. The third column is the number of trace calls for the case without change log and the last one is the number of trace calls with the change log.
Apparently most of the time change log adds some extra retries, but it's pretty much insignificant. So, I guess, it's fair to say that any data structure would be good enough, because most of the work is related to updating the map and most of the retries are happening because of it.

Reasoning about IORef operation reordering in concurrent programs

The docs say:
In a concurrent program, IORef operations may appear out-of-order to
another thread, depending on the memory model of the underlying
processor architecture...The implementation is required to ensure that
reordering of memory operations cannot cause type-correct code to go
wrong. In particular, when inspecting the value read from an IORef,
the memory writes that created that value must have occurred from the
point of view of the current thread.
Which I'm not even entirely sure how to parse. Edward Yang says
In other words, “We give no guarantees about reordering, except that
you will not have any type-safety violations.” ...
the last sentence remarks that an IORef is not allowed to point to
uninitialized memory
So... it won't break the whole haskell; not very helpful. The discussion from which the memory model example arose also left me with questions (even Simon Marlow seemed a bit surprised).
Things that seem clear to me from the documentation
within a thread an atomicModifyIORef "is never observed to take place ahead of any earlier IORef operations, or after any later IORef operations" i.e. we get a partial ordering of: stuff above the atomic mod -> atomic mod -> stuff after. Although, the wording "is never observed" here is suggestive of spooky behavior that I haven't anticipated.
A readIORef x might be moved before writeIORef y, at least when there are no data dependencies
Logically I don't see how something like readIORef x >>= writeIORef y could be reordered
What isn't clear to me
Will newIORef False >>= \v-> writeIORef v True >> readIORef v always return True?
In the maybePrint case (from the IORef docs) would a readIORef myRef (along with maybe a seq or something) before readIORef yourRef have forced a barrier to reordering?
What's the straightforward mental model I should have? Is it something like:
within and from the point of view of an individual thread, the
ordering of IORef operations will appear sane and sequential; but the
compiler may actually reorder operations in such a way that break
certain assumptions in a concurrent system; however when a thread does
atomicModifyIORef, no threads will observe operations on that
IORef that appeared above the atomicModifyIORef to happen after,
and vice versa.
...? If not, what's the corrected version of the above?
If your response is "don't use IORef in concurrent code; use TVar" please convince me with specific facts and concrete examples of the kind of things you can't reason about with IORef.
I don't know Haskell concurrency, but I know something about memory models.
Processors can reorder instructions the way they like: loads may go ahead of loads, loads may go ahead of stores, loads of dependent stuff may go ahead of loads of stuff they depend on (a[i] may load the value from array first, then the reference to array a!), stores may be reordered with each other. You simply cannot put a finger on it and say "these two things definitely appear in a particular order, because there is no way they can be reordered". But in order for concurrent algorithms to operate, they need to observe the state of other threads. This is where it is important for thread state to proceed in a particular order. This is achieved by placing barriers between instructions, which guarantee the order of instructions to appear the same to all processors.
Typically (one of the simplest models), you want two types of ordered instructions: ordered load that does not go ahead of any other ordered loads or stores, and ordered store that does not go ahead of any instructions at all, and a guarantee that all ordered instructions appear in the same order to all processors. This way you can reason about IRIW kind of problem:
Thread 1: x=1
Thread 2: y=1
Thread 3: r1=x;
r2=y;
Thread 4: r4=y;
r3=x;
If all of these operations are ordered loads and ordered stores, then you can conclude the outcome (1,0,0,1)=(r1,r2,r3,r4) is not possible. Indeed, ordered stores in Threads 1 and 2 should appear in some order to all threads, and r1=1,r2=0 is witness that y=1 is executed after x=1. In its turn, this means that Thread 4 can never observe r4=1 without observing r3=1 (which is executed after r4=1) (if the ordered stores happen to be executed that way, observing y==1 implies x==1).
Also, if the loads and stores were not ordered, the processors would usually be allowed to observe the assignments to appear even in different orders: one might see x=1 appear before y=1, the other might see y=1 appear before x=1, so any combination of values r1,r2,r3,r4 is permitted.
This is sufficiently implemented like so:
ordered load:
load x
load-load -- barriers stopping other loads to go ahead of preceding loads
load-store -- no one is allowed to go ahead of ordered load
ordered store:
load-store
store-store -- ordered store must appear after all stores
-- preceding it in program order - serialize all stores
-- (flush write buffers)
store x,v
store-load -- ordered loads must not go ahead of ordered store
-- preceding them in program order
Of these two, I can see IORef implements a ordered store (atomicWriteIORef), but I don't see a ordered load (atomicReadIORef), without which you cannot reason about IRIW problem above. This is not a problem, if your target platform is x86, because all loads will be executed in program order on that platform, and stores never go ahead of loads (in effect, all loads are ordered loads).
A atomic update (atomicModifyIORef) seems to me a implementation of a so-called CAS loop (compare-and-set loop, which does not stop until a value is atomically set to b, if its value is a). You can see the atomic modify operation as a fusion of a ordered load and ordered store, with all those barriers there, and executed atomically - no processor is allowed to insert a modification instruction between load and store of a CAS.
Furthermore, writeIORef is cheaper than atomicWriteIORef, so you want to use writeIORef as much as your inter-thread communication protocol permits. Whereas writeIORef x vx >> writeIORef y vy >> atomicWriteIORef z vz >> readIORef t does not guarantee the order in which writeIORefs appear to other threads with respect to each other, there is a guarantee that they both will appear before atomicWriteIORef - so, seeing z==vz, you can conclude at this moment x==vx and y==vy, and you can conclude IORef t was loaded after stores to x, y, z can be observed by other threads. This latter point requires readIORef to be a ordered load, which is not provided as far as I can tell, but it will work like a ordered load on x86.
Typically you don't use concrete values of x, y, z, when reasoning about the algorithm. Instead, some algorithm-dependent invariants about the assigned values must hold, and can be proven - for example, like in IRIW case you can guarantee that Thread 4 will never see (0,1)=(r3,r4), if Thread 3 sees (1,0)=(r1,r2), and Thread 3 can take advantage of this: this means something is mutually excluded without acquiring any mutex or lock.
An example (not in Haskell) that will not work if loads are not ordered, or ordered stores do not flush write buffers (the requirement to make written values visible before the ordered load executes).
Suppose, z will show either x until y is computed, or y, if x has been computed, too. Don't ask why, it is not very easy to see outside the context - it is a kind of a queue - just enjoy what sort of reasoning is possible.
Thread 1: x=1;
if (z==0) compareAndSet(z, 0, y == 0? x: y);
Thread 2: y=2;
if (x != 0) while ((tmp=z) != y && !compareAndSet(z, tmp, y));
So, two threads set x and y, then set z to x or y, depending on whether y or x were computed, too. Assuming initially all are 0. Translating into loads and stores:
Thread 1: store x,1
load z
if ==0 then
load y
if == 0 then load x -- if loaded y is still 0, load x into tmp
else load y -- otherwise, load y into tmp
CAS z, 0, tmp -- CAS whatever was loaded in the previous if-statement
-- the CAS may fail, but see explanation
Thread 2: store y,2
load x
if !=0 then
loop: load z -- into tmp
load y
if !=tmp then -- compare loaded y to tmp
CAS z, tmp, y -- attempt to CAS z: if it is still tmp, set to y
if ! then goto loop -- if CAS did not succeed, go to loop
If Thread 1 load z is not a ordered load, then it will be allowed to go ahead of a ordered store (store x). It means wherever z is loaded to (a register, cache line, stack,...), the value is such that existed before the value of x can be visible. Looking at that value is useless - you cannot then judge where Thread 2 is up to. For the same reason you've got to have a guarantee that the write buffers were flushed before load z executed - otherwise it will still appear as a load of a value that existed before Thread 2 could see the value of x. This is important as will become clear below.
If Thread 2 load x or load z are not ordered loads, they may go ahead of store y, and will observe the values that were written before y is visible to other threads.
However, see that if the loads and stores are ordered, then the threads can negotiate who is to set the value of z without contending z. For example, if Thread 2 observes x==0, there is guarantee that Thread 1 will definitely execute x=1 later, and will see z==0 after that - so Thread 2 can leave without attempting to set z.
If Thread 1 observes z==0, then it should try to set z to x or y. So, first it will check if y has been set already. If it wasn't set, it will be set in the future, so try to set to x - CAS may fail, but only if Thread 2 concurrently set z to y, so no need to retry. Similarly there is no need to retry if Thread 1 observed y has been set: if CAS fails, then it has been set by Thread 2 to y. Thus we can see Thread 1 sets z to x or y in accordance with the requirement, and does not contend z too much.
On the other hand, Thread 2 can check if x has been computed already. If not, then it will be Thread 1's job to set z. If Thread 1 has computed x, then need to set z to y. Here we do need a CAS loop, because a single CAS may fail, if Thread 1 is attempting to set z to x or y concurrently.
The important takeaway here is that if "unrelated" loads and stores are not serialized (including flushing write buffers), no such reasoning is possible. However, once loads and stores are ordered, both threads can figure out the path each of them _will_take_in_the_future, and that way eliminate contention in half the cases. Most of the time x and y will be computed at significantly different times, so if y is computed before x, it is likely Thread 2 will not touch z at all. (Typically, "touching z" also possibly means "wake up a thread waiting on a cond_var z", so it is not only a matter of loading something from memory)
within a thread an atomicModifyIORef "is never observed to take place
ahead of any earlier IORef operations, or after any later IORef
operations" i.e. we get a partial ordering of: stuff above the atomic
mod -> atomic mod -> stuff after. Although, the wording "is never
observed" here is suggestive of spooky behavior that I haven't
anticipated.
"is never observed" is standard language when discussing memory reordering issues. For example, a CPU may issue a speculative read of a memory location earlier than necessary, so long as the value doesn't change between when the read is executed (early) and when the read should have been executed (in program order). That's entirely up to the CPU and cache though, it's never exposed to the programmer (hence language like "is never observed").
A readIORef x might be moved before writeIORef y, at least when there
are no data dependencies
True
Logically I don't see how something like readIORef x >>= writeIORef y
could be reordered
Correct, as that sequence has a data dependency. The value to be written depends upon the value returned from the first read.
For the other questions: newIORef False >>= \v-> writeIORef v True >> readIORef v will always return True (there's no opportunity for other threads to access the ref here).
In the myprint example, there's very little you can do to ensure this works reliably in the face of new optimizations added to future GHCs and across various CPU architectures. If you write:
writeIORef myRef True
x <- readIORef myRef
yourVal <- x `seq` readIORef yourRef
Even though GHC 7.6.3 produces correct cmm (and presumably asm, although I didn't check), there's nothing to stop a CPU with a relaxed memory model from moving the readIORef yourRef to before all of the myref/seq stuff. The only 100% reliable way to prevent it is with a memory fence, which GHC doesn't provide. (Edward's blog post does go through some of the other things you can do now, as well as why you may not want to rely on them).
I think your mental model is correct, however it's important to know that the possible apparent reorderings introduced by concurrent ops can be really unintuitive.
Edit: at the cmm level, the code snippet above looks like this (simplified, pseudocode):
[StackPtr+offset] := True
x := [StackPtr+offset]
if (notEvaluated x) (evaluate x)
yourVal := [StackPtr+offset2]
So there are a couple things that can happen. GHC as it currently stands is unlikely to move the last line any earlier, but I think it could if doing so seemed more optimal. I'm more concerned that, if you compile via LLVM, the LLVM optimizer might replace the second line with the value that was just written, and then the third line might be constant-folded out of existence, which would make it more likely that the read could be moved earlier. And regardless of what GHC does, most CPU memory models allow the CPU itself to move the read earlier absent a memory barrier.
http://en.wikipedia.org/wiki/Memory_ordering for non atomic concurrent reads and writes. (basically when you dont use atomics, just look at the memory ordering model for your target CPU)
Currently ghc can be regarded as not reordering your reads and writes for non atomic (and imperative) loads and stores. However, GHC Haskell currently doesn't specify any sort of concurrent memory model, so those non atomic operations will have the ordering semantics of the underlying CPU model, as I link to above.
In other words, Currently GHC has no formal concurrency memory model, and because any optimization algorithms tend to be wrt some model of equivalence, theres no reordering currently in play there.
that is: the only semantic model you can have right now is "the way its implemented"
shoot me an email! I'm working on some patching up atomics for 7.10, lets try to cook up some semantics!
Edit: some folks who understand this problem better than me chimed in on ghc-users thread here http://www.haskell.org/pipermail/glasgow-haskell-users/2013-December/024473.html .
Assume that i'm wrong in both this comment and anything i said in the ghc-users thread :)

High performance unique timestamp id for multiple threads in Haskell

I have multiple threads processing events. I want to assign a nanosecond timestamp to each event. It must be a unique id, though. So, in the odd case that two events arrive such that they would be assigned the same timestamp, I want one of them to be incremented by one nanosecond. Given that the real precision is not at the nanosecond level, that's ok as far as the time stamp nature of the system.
In one thread, this is a trivial problem. But across multiple threads, it gets more challenging. Performance is absolutely critical so the idea of naively synchronizing on a typical id generator type of thing seems like it would block far too much.
Is there some approach that solves this with minimal or no locking?
Why not separate the concerns of timestamping and unique ID generation? For example, there's the standard module Data.Unique, which provides a global supply of unique values in IO and should be fast enough for most purposes. Or, if you need something fancier, the concurrent-supply package offers a high-performance, concurrent unique ID supply with a pure interface.
That said, you could probably use the POSIX monotonic clock for this purpose, using e.g. the clock package:
import Control.Monad
import qualified System.Posix.Clock as Clock
main :: IO ()
main = replicateM_ 100 $ do
time <- Clock.getTime Clock.Monotonic
print (Clock.sec time, Clock.nsec time)
Could you use two pieces of information as the unique id? If so, give each thread a unique id and record for each event the nanosecond timestamp and the id of the thread that assigns the timestamp. Then the problem reduces to whatever you would have done in the single threaded case to guarantee the uniqueness of the timestamps. And with no synchronisation at all after initialisation.
You can use atomicModifyIORef to implement an atomic counter. With GHC, it's implemented using atomic operations, not locks.
import Data.IORef
import System.IO.Unsafe
counter :: IO Int
counter = unsafePerformIO $ newIORef 0
getUnique :: IO Int
getUnique = atomicModifyIORef counter $ \x -> let y = x + 1 in (y, y)
In C based languages, we'd normally accomplish this using an atomic counter -- no lock is required. If you want a timestamp too, that would be a separate value. I'm not sure about Haskell because I don't write with it (as interesting as it sounds).
http://hackage.haskell.org/package/greg-client maybe?

When can DataInputStream.skipBytes(n) not skip n bytes?

The Sun Documentation for DataInput.skipBytes states that it "makes an attempt to skip over n bytes of data from the input stream, discarding the skipped bytes. However, it may skip over some smaller number of bytes, possibly zero. This may result from any of a number of conditions; reaching end of file before n bytes have been skipped is only one possibility."
Other than reaching end of file, why might skipBytes() not skip the right number of bytes? (The DataInputStream I am using will either be wrapping a FileInputStream or a PipedInputStream.)
If I definitely want to skip n bytes and throw an EOFException if this causes me to go to the end of the file, should I use readFully() and ignore the resulting byte array? Or is there a better way?
1) There might not be that much data available to read (the other end of the pipe might not have sent that much data yet), and the implementing class might be non-blocking (i.e. it will just return what it can, rather than waiting for enough data to fulfil the request).
I don't know if any implementations actually behave in this way, however, but the interface is designed to permit it.
Another option is simply that the file gets closed part-way through the read.
2) Either readFully() (which will always wait for enough input or else fail) or call skipBytes() in a loop. I think the former is probably better, unless the array is truly vast.
I came across this problem today. It was reading off a network connection on a virtual machine so I imagine there could be a number of reasons for this happening. I solved it by simply forcing the input stream to skip bytes until it had skipped the number of bytes I wanted it to:
int byteOffsetX = someNumber; //n bytes to skip
int nSkipped = 0;
nSkipped = in.skipBytes(byteOffsetX);
while (nSkipped < byteOffsetX) {
nSkipped = nSkipped + in.skipBytes(byteOffsetX - nSkipped);
}
It turns out that readFully() adds more performance overhead than I was willing to put up with.
In the end I compromised: I call skipBytes() once, and if that returns fewer than the right number of bytes, I call readFully() for the remaining bytes.
Josh Bloch has publicised this recently. It is consistent in that InputStream.read is not guaranteed to read as many bytes as it could. However, it is utterly pointless as an API method. InputStream should probably also have readFully.
According to the docs, readFully() is the only way that both works and guaranteed to work.
The actual Oracle implementation is... confusing:
public final int skipBytes(int n) throws IOException {
int total = 0;
int cur = 0;
while ((total<n) && ((cur = (int) in.skip(n-total)) > 0)) {
total += cur;
}
return total;
}
Why call skip() in a loop when skipBytes() has essentially the same contract as skip()? It would make perfect sense to implement it this way if both of the following were true: skipBytes() guaranteed to skip less than requested only on EOF, and skip() guaranteed to skip at least one byte if at all possible (just like read() does).
What's even worse, is that skip() is actually implemented using read(), which means it actually does the job. It just doesn't promise to do it, which means other implementations may fail to do so (and even Oracle one may potentially fail in the future if changed in future releases).
To be completely safe: call readBytes(), and if it doesn't do the job, allocate a temp buffer and call readFully() (use a loop here if the ability to skip over arbitrarily large amounts of data is needed).
On the other hand, calling skipBytes() in a loop is pointless. At least with Oracle implementation, because it's already a loop.

Resources