SVD and singular / non-singular matrices - node.js

I need to use the SVD form of a matrix to extract concepts from a series of documents. My matrix is of the form A = [d1, d2, d3 ... dN] where di is a binary vector of M components. Then the svd decomposition gives me svd(A) = U x S x V' with S containing the singular values.
I use SVDLIBC to do the processing in nodejs (using a small module I wrote to use it). It seemed to work all well, but I noticed something quite weird in the running time behavior depending on the state of my matrix (where N, M are growing, but already above 1000 for each).
First, I didn't consider extracting the same document vectors, but now after some tests, it looks like adding a document twice sometimes speeds the processing extraordinarily.
Do I have to make sure that each of the columns of A are pairwise-independent? Are they required to be all linearly independent? (I thought nope, since SVD just seems to be performing its job well even with some columns being exactly the same, it will simply show in the resulting decomposition which columns / rows are useless by having 0 components in U or V)
Now that it sometimes takes way too much time to compute the SVD of my big matrix, I was trying to reduce its size by removing the same columns, but I found out that actually adding dummy same vectors can make it way faster. Is that normal? What's happening?
Logically, I'd say that I want my matrix to contain as much information as possible, and thus
[A] Remove all same columns, and in the best case, maybe
[B] Remove linearly dependent columns.
Doing [A] seems pretty simple and not computationally too expensive, I could hash my vectors at construction to check what are the possibly same vectors, and then spend time to check these, but are there good computation techniques for [A] and [B]?
(I'd appreciate for [A] to not have to check equality of a new vector with the whole past vectors the brute-force way, and as for [B], I don't know any good way to check it / do it).
Added related question: about my second question, why would SVD's running time behavior change so massively by just adding one similar column? Is that a normal possible behavior, or does it mean I should look for a bug in SVDLIBC?

It is difficult to say where the problem is without samples of fast and slow input matrices. But, since one of the primary uses of the SVD is to provide a rotation that eliminates covariance, redundant (or the same) columns should not cause problems.
To answer your question about if the slow behavior being a bug in the library you're using, I'd suggest trying to retrieve the SVD of the same matrix using another tool. For example, in Octave, retrieve an SVD of your matrix to compare runtimes:
[U, S, V] = svd(A)

Related

How to compute the iteration matrix for nth NLBGS iteration

I was wondering if there was a direct way of computing the iteration matrix for nth Linear Block Gauss Seidel iteration within OpenMDAO?
thank you
If I understand you correctly, you are referring to the matrix-form of the Gauss Seidel algorithm where you take Ax=b, and break A up into the Diagonal (D), Lower (L) and Upper (U) parts, then use those parts to compute the next iterate.
Specifically you compute [D-L]^-1. This, I believe is what you are referring to as the "iteration matrix" (I am not familiar with this terminology, but based on the algorithm I'm comfortable making an educated guess).
This formulation of the algorithm is useful to think about and a simple way to implement it, but OpenMDAO takes a different approach. The LBGS algorithm implemented in OpenMDAO is set up to work in a matrix-free manner. That means it only interacts with the linear operator methods solve_linear and apply_linear and never explicitly assembles the A matrix at all. Hence there isn't an opportunity to split A up into D, L, U.
Depending on the way you constructed the model, the A matrix you would need might or might not be there at all because OpenMDAO is capable of working in a completely matrix free context. However, if all of your components use the compute_partials or linearize methods to provide partial derivatives then the data you would need for the A matrix does exist in memory.
You'll have to dig for it a bit, and ironically the best place to see how to do that is in the direct solver which does actually require the matrix be formed to compute a factorization.
Also, in that code you'll see a function can iteratively call the linear operator to construct a dense matrix even if the underlying components don't provide their partials directly. Please note that this approach for assembling the matrix is extremely slow and is not recommended for normal operations.

Random Index from a Tensor (Sampling with Replacement from a Tensor)

I'm trying to manipulate individual weights of different neural nets to see how their performance degrades. As part of these experiments, I'm required to sample randomly from their weight tensors, which I've come to understand as sampling with replacement (in the statistical sense). However, since it's high-dimensional, I've been stumped by how to do this in a fair manner. Here are the approaches and research I've put into considering this problem:
This was previously implemented by selecting a random layer and then selecting a random weight in that layer (ignore the implementation of picking a random weight). Since layers are different sizes, we discovered that weights were being sampled unevenly.
I considered what would happen if we sampled according to the numpy.shape of the tensor; however, I realize now that this encounters the same problem as above.
Consider what happens to a rank 2 tensor like this:
[[*, *, *],
[*, *, *, *]]
Selecting a row randomly and then a value from that row results in an unfair selection. This method could work if you're able to assert that this scenario never occurs, but it's far from a general solution.
Note that this possible duplicate actually implements it in this fashion.
I found people suggesting flattening the tensor and use numpy.random.choice to select randomly from a 1D array. That's a simple solution, except I have no idea how to invert the flattened tensor back into its original shape. Further, flattening millions of weights would be a somewhat slow implementation.
I found someone discussing tf.random.multinomial here, but I don't understand enough of it to know whether it's applicable or not.
I ran into this paper about resevoir sampling, but again, it went over my head.
I found another paper which specifically discusses tensors and sampling techniques, but it went even further over my head.
A teammate found this other paper which talks about random sampling from a tensor, but it's only for rank 3 tensors.
Any help understanding how to do this? I'm working in Python with Keras, but I'll take an algorithm in any form that it exists. Thank you in advance.
Before I forget to document the solution we arrived at, I'll talk about the two different paths I see for implementing this:
Use a total ordering on scalar elements of the tensor. This is effectively enumerating your elements, i.e. flattening them. However, you can do this while maintaining the original shape. Consider this pseudocode (in Python-like syntax):
def sample_tensor(tensor, chosen_index: int) -> Tuple[int]:
"""Maps a chosen random number to its index in the given tensor.
Args:
tensor: A ragged-array n-tensor.
chosen_index: An integer in [0, num_scalar_elements_in_tensor).
Returns:
The index that accesses this element in the tensor.
NOTE: Entirely untested, expect it to be fundamentally flawed.
"""
remaining = chosen_index
for (i, sub_list) in enumerate(tensor):
if type(sub_list) is an iterable:
if |sub_list| > remaining:
remaining -= |sub_list|
else:
return i joined with sample_tensor(sub_list, remaining)
else:
if len(sub_list) <= remaining:
return tuple(remaining)
First of all, I'm aware this isn't a sound algorithm. The idea is to count down until you reach your element, with bookkeeping for indices.
We need to make crucial assumptions here. 1) All lists will eventually contain only scalars. 2) By direct consequence, if a list contains lists, assume that it also doesn't contain scalars at the same level. (Stop and convince yourself for (2).)
We also need to make a critical note here too: We are unable to measure the number of scalars in any given list, unless the list is homogeneously consisting of scalars. In order to avoid measuring this magnitude at every point, my algorithm above should be refactored to descend first, and subtract later.
This algorithm has some consequences:
It's the fastest in its entire style of approaching the problem. If you want to write a function f: [0, total_elems) -> Tuple[int], you must know the number of preceding scalar elements along the total ordering of the tensor. This is effectively bound at Theta(l) where l is the number of lists in the tensor (since we can call len on a list of scalars).
It's slow. It's too slow compared to sampling nicer tensors that have a defined shape to them.
It begs the question: can we do better? See the next solution.
Use a probability distribution in conjunction with numpy.random.choice. The idea here is that if we know ahead of time what the distribution of scalars is already like, we can sample fairly at each level of descending the tensor. The hard problem here is building this distribution.
I won't write pseudocode for this, but lay out some objectives:
This can be called only once to build the data structure.
The algorithm needs to combine iterative and recursive techniques to a) build distributions for sibling lists and b) build distributions for descendants, respectively.
The algorithm will need to map indices to a probability distribution respective to sibling lists (note the assumptions discussed above). This does require knowing the number of elements in an arbitrary sub-tensor.
At lower levels where lists contain only scalars, we can simplify by just storing the number of elements in said list (as opposed to storing probabilities of selecting scalars randomly from a 1D array).
You will likely need 2-3 functions: one that utilizes the probability distribution to return an index, a function that builds the distribution object, and possibly a function that just counts elements to help build the distribution.
This is also faster at O(n) where n is the rank of the tensor. I'm convinced this is the fastest possible algorithm, but I lack the time to try to prove it.
You might choose to store the distribution as an ordered dictionary that maps a probability to either another dictionary or the number of elements in a 1D array. I think this might be the most sensible structure.
Note that (2) is truly the same as (1), but we pre-compute knowledge about the densities of the tensor.
I hope this helps.

PCA in Spark MLlib and Spark ML

Spark now has two machine learning libraries - Spark MLlib and Spark ML. They do somewhat overlap in what is implemented, but as I understand (as a person new to the whole Spark ecosystem) Spark ML is the way to go and MLlib is still around mostly for backward compatibility.
My question is very concrete and related to PCA. In MLlib implementation there seems to be a limitation of the number of columns
spark.mllib supports PCA for tall-and-skinny matrices stored in row-oriented format and any Vectors.
Also, if you look at the Java code example there is also this
The number of columns should be small, e.g, less than 1000.
On the other hand, if you look at ML documentation, there are no limitations mentioned.
So, my question is - does this limitation also exists in Spark ML? And if so, why the limitation and is there any workaround to be able to use this implementation even if the number of columns is large?
PCA consists in finding a set of decorrelated random variables that you can represent your data with, sorted in decreasing order with respect to the amount of variance they retain.
These variables can be found by projecting your data points onto a specific orthogonal subspace. If your (mean-centered) data matrix is X, this subspace is comprised of the eigenvectors of X^T X.
When X is large, say of dimensions n x d, you can compute X^T X by computing the outer product of each row of the matrix by itself, then adding all the results up. This is of course amenable to a simple map-reduce procedure if d is small, no matter how large n is. That's because the outer product of each row by itself is a d x d matrix, which will have to be manipulated in main memory by each worker. That's why you might run into trouble when handling many columns.
If the number of columns is large (and the number of rows not so much so) you can indeed compute PCA. Just compute the SVD of your (mean-centered) transposed data matrix and multiply it by the resulting eigenvectors and the inverse of the diagonal matrix of eigenvalues. There's your orthogonal subspace.
Bottom line: if the spark.ml implementation follows the first approach every time, then the limitation should be the same. If they check the dimensions of the input dataset to decide whether they should go for the second approach, then you won't have problems dealing with large numbers of columns if the number of rows is small.
Regardless of that, the limit is imposed by how much memory your workers have, so perhaps they let users hit the ceiling by themselves, rather than suggesting a limitation that may not apply for some. That might be the reason why they decided not to mention the limitation in the new docs.
Update: The source code reveals that they do take the first approach every time, regardless of the dimensionality of the input. The actual limit is 65535, and at 10,000 they issue a warning.

Dummy Coding of Nominal Attributes - Effect of Using K Dummies, Effect of Attribute Selection

Summing up my understanding of the topic 'Dummy Coding' is usually understood as coding a nominal attribute with K possible values as K-1 binary dummies. The usage of K values would cause redundancy and would have a negative impact e.g. on logistic regression, as far as I learned it. That far, everything's clear to me.
Yet, two issues are unclear to me:
1) Bearing in mind the issue stated above, I am confused that the 'Logistic' classifier in WEKA actually uses K dummies (see picture). Why would that be the case?
2) An issue arises as soon as I consider attribute selection. Where the left-out attribute value is implicitly included as the case where all dummies are zero if all dummies are actually used for the model, it isn't included clearly anymore, if one dummy is missing (as not selected in attribute selection). The issue is much easy to understand with the sketch I uploaded. How can that issue be treated?
Secondly
Images
WEKA Output: The Logistic algorithm was run on the UCI dataset German Credit, where the possible values of the first attribute are A11,A12,A13,A14. All of them are included in the logistic regression model. http://abload.de/img/bildschirmfoto2013-089out9.png
Decision Tree Example: Sketch showing the issue when it comes to running decision trees on datasets with dummy-coded instances after attribute selection. http://abload.de/img/sketchziu5s.jpg
The output is generally more easy to read, interpret and use when you use k dummies instead of k-1 dummies. I figure that is why everybody seems to actually use k dummies.
But yes, as the k values sum up to 1, there exists a correlation that may cause problems. But correlations in data sets are common, you will never completely get rid of them!
I believe feature selection and dummy coding just doesn't fit. It equals dropping some values from the attribute. Why do you insist on doing feature selection?
You really should be using weighting, or consider more advanced algorithms that can handle such data. In fact the dummy variables can cause just as much trouble, because they are binary, and oh so many algorithms (e.g. k-means) don't make much sense on binary variables.
As for the decision tree: don't perform, feature selection on your output attribute...
Plus, as a decision tree already selects features, it does not make sense to do all this anyway... leave it to the decision tree to decide upon which attribute to use for splitting. This way, it can learn dependencies, too.

k-means with ellipsoids

I have n points in R^3 that I want to cover with k ellipsoids or cylinders (I don't really care; whichever is easier). I want to approximately minimize the union of the volumes. Let's say n is tens of thousands and k is a handful. Development time (i.e. simplicity) is more important than runtime.
Obviously I can run k-means and use perfect balls for my ellipsoids. Or I can run k-means, then use minimum enclosing ellipsoids per cluster rather than covering with balls, though in the worst case that's no better. I've seen talk of handling anisotropy with k-means but the links I saw seemed to think I had a tensor in hand; I don't, I just know the data will be a union of ellipsoids. Any suggestions?
[Edit: There's a couple votes for fitting a mixture of multivariate Gaussians, which seems like a viable thing to try. Firing up an EM code to do that won't minimize the volume of the union, but of course k-means doesn't minimize volume either.]
So you likely know k-means is NP-hard, and this problem is even more general (harder). Because you want to do ellipsoids it might make a lot of sense to fit a mixture of k multivariate gaussian distributions. You would probably want to try and find a maximum likelihood solution, which is a non-convex optimization, but at least it's easy to formulate and there is likely code available.
Other than that you're likely to have to write your own heuristic search algorithm from scratch, this is just a huge undertaking.
I did something similar with multi-variate gaussians using this method. The authors use kurtosis as the split measure, and I found it to be a satisfactory method for my application, clustering points obtained from a laser range finder (i.e. computer vision).
If the ellipsoids can overlap a lot,
then methods like k-means that try to assign points to single clusters
won't work very well.
Part of each ellipsoid has to fit the surface of your object,
but the rest may be inside it, don't-cares.
That is, covering algorithms
seem to me quite different from clustering / splitting algorithms;
unions are not splits.
Gaussian mixtures with lots of overlaps ?
No idea, but see the picture and code on Numerical Recipes p. 845.
Coverings are hard even in 2d, see
find-near-minimal-covering-set-of-discs-on-a-2-d-plane.

Resources