Simple example for ImpredicativeTypes - haskell

The GHC user's guide describes the impredicative polymorphism extension with reference to the following example:
f :: Maybe (forall a. [a] -> [a]) -> Maybe ([Int], [Char])
f (Just g) = Just (g [3], g "hello")
f Nothing = Nothing
However, when I define this example in a file and try to call it, I get a type error:
ghci> f (Just reverse)
<interactive>:8:9:
Couldn't match expected type `forall a. [a] -> [a]'
with actual type `[a0] -> [a0]'
In the first argument of `Just', namely `reverse'
In the first argument of `f', namely `(Just reverse)'
In the expression: f (Just reverse)
ghci> f (Just id)
<interactive>:9:9:
Couldn't match expected type `forall a. [a] -> [a]'
with actual type `a0 -> a0'
In the first argument of `Just', namely `id'
In the first argument of `f', namely `(Just id)'
In the expression: f (Just id)
Seemingly only undefined, Nothing, or Just undefined satisfies the type-checker.
I have two questions, therefore:
Can the above function be called with Just f for any non-bottom f?
Can someone provide an example of a value only definable with impredicative polymorphism, and usable in a non-trivial way?
The latter is particularly with the HaskellWiki page on Impredicative Polymorphism in mind, which currently makes a decidedly unconvincing case for the existence of the extension.

Here's an example of how one project, const-math-ghc-plugin, uses ImpredicativeTypes to specify a list of matching rules.
The idea is that when we have an expression of the form App (PrimOp nameStr) (Lit litVal), we want to look up the appropriate rule based upon the primop name. A litVal will be either a MachFloat d or MachDouble d (d is a Rational). If we find a rule, we want to apply the function for that rule to d converted to the correct type.
The function mkUnaryCollapseIEEE does this for unary functions.
mkUnaryCollapseIEEE :: (forall a. RealFloat a => (a -> a))
-> Opts
-> CoreExpr
-> CoreM CoreExpr
mkUnaryCollapseIEEE fnE opts expr#(App f1 (App f2 (Lit lit)))
| isDHash f2, MachDouble d <- lit = e d mkDoubleLitDouble
| isFHash f2, MachFloat d <- lit = e d mkFloatLitFloat
where
e d = evalUnaryIEEE opts fnE f1 f2 d expr
The first argument needs to have a Rank-2 type, because it will be instantiated at either Float or Double depending on the literal constructor. The list of rules looks like this:
unarySubIEEE :: String -> (forall a. RealFloat a => a -> a) -> CMSub
unarySubIEEE nm fn = CMSub nm (mkUnaryCollapseIEEE fn)
subs =
[ unarySubIEEE "GHC.Float.exp" exp
, unarySubIEEE "GHC.Float.log" log
, unarySubIEEE "GHC.Float.sqrt" sqrt
-- lines omitted
, unarySubIEEE "GHC.Float.atanh" atanh
]
This is ok, if a bit too much boilerplate for my taste.
However, there's a similar function mkUnaryCollapsePrimIEEE. In this case, the rules are different for different GHC versions. If we want to support multiple GHCs, it gets a bit tricky. If we took the same approach, the subs definition would require a lot of CPP, which can be unmaintainable. Instead, we defined the rules in a separate file for each GHC version. However, mkUnaryCollapsePrimIEEE isn't available in those modules due to circular import issues. We could probably re-structure the modules to make it work, but instead we defined the rulesets as:
unaryPrimRules :: [(String, (forall a. RealFloat a => a -> a))]
unaryPrimRules =
[ ("GHC.Prim.expDouble#" , exp)
, ("GHC.Prim.logDouble#" , log)
-- lines omitted
, ("GHC.Prim.expFloat#" , exp)
, ("GHC.Prim.logFloat#" , log)
]
By using ImpredicativeTypes, we can keep a list of Rank-2 functions, ready to use for the first argument to mkUnaryCollapsePrimIEEE. The alternatives would be much more CPP/boilerplate, changing the module structure (or circular imports), or a lot of code duplication. None of which I would like.
I do seem to recall GHC HQ indicating that they would like to drop support for the extension, but perhaps they've reconsidered. It is quite useful at times.

Isn't it just that ImpredicativeTypes has been quietly dropped with the new typechecker in ghc-7+ ? Note that ideone.com still uses ghc-6.8 and indeed your program use to run fine :
{-# OPTIONS -fglasgow-exts #-}
f :: Maybe (forall a. [a] -> [a]) -> Maybe ([Int], [Char])
f (Just g) = Just (g [3], g "hello")
f Nothing = Nothing
main = print $ f (Just reverse)
prints Just ([3],"olleh") as expected; see http://ideone.com/KMASZy
augustss gives a handsome use case -- some sort of imitation Python dsl -- and a defense of the extension here: http://augustss.blogspot.com/2011/07/impredicative-polymorphism-use-case-in.html referred to in the ticket here http://hackage.haskell.org/trac/ghc/ticket/4295

Note this workaround:
justForF :: (forall a. [a] -> [a]) -> Maybe (forall a. [a] -> [a])
justForF = Just
ghci> f (justForF reverse)
Just ([3],"olleh")
Or this one (which is basically the same thing inlined):
ghci> f $ (Just :: (forall a. [a] -> [a]) -> Maybe (forall a. [a] -> [a])) reverse
Just ([3],"olleh")
Seems like the type inference has problems infering the type of the Just in your case and we have to tell it the type.
I have no clue if it's a bug or if there is a good reason for it.. :)

Related

Confused about GADTs and propagating constraints

There's plenty of Q&A about GADTs being better than DatatypeContexts, because GADTs automagically make constraints available in the right places. For example here, here, here. But sometimes it seems I still need an explicit constraint. What's going on? Example adapted from this answer:
{-# LANGUAGE GADTs #-}
import Data.Maybe -- fromJust
data GADTBag a where
MkGADTBag :: Eq a => { unGADTBag :: [a] } -> GADTBag a
baz (MkGADTBag x) (Just y) = x == y
baz2 x y = unGADTBag x == fromJust y
-- unGADTBag :: GADTBag a -> [a] -- inferred, no Eq a
-- baz :: GADTBag a -> Maybe [a] -> Bool -- inferred, no Eq a
-- baz2 :: Eq a => GADTBag a -> Maybe [a] -> Bool -- inferred, with Eq a
Why can't the type for unGADTBag tell us Eq a?
baz and baz2 are morally equivalent, yet have different types. Presumably because unGADTBag has no Eq a, then the constraint can't propagate into any code using unGADTBag.
But with baz2 there's an Eq a constraint hiding inside the GADTBag a. Presumably baz2's Eq a will want a duplicate of the dictionary already there(?)
Is it that potentially a GADT might have many data constructors, each with different (or no) constraints? That's not the case here, or with typical examples for constrained data structures like Bags, Sets, Ordered Lists.
The equivalent for a GADTBag datatype using DatatypeContexts infers baz's type same as baz2.
Bonus question: why can't I get an ordinary ... deriving (Eq) for GADTBag? I can get one with StandaloneDeriving, but it's blimmin obvious, why can't GHC just do it for me?
deriving instance (Eq a) => Eq (GADTBag a)
Is the problem again that there might be other data constructors?
(Code exercised at GHC 8.6.5, if that's relevant.)
Addit: in light of #chi's and #leftroundabout's answers -- neither of which I find convincing. All of these give *** Exception: Prelude.undefined:
*DTContexts> unGADTBag undefined
*DTContexts> unGADTBag $ MkGADTBag undefined
*DTContexts> unGADTBag $ MkGADTBag (undefined :: String)
*DTContexts> unGADTBag $ MkGADTBag (undefined :: [a])
*DTContexts> baz undefined (Just "hello")
*DTContexts> baz (MkGADTBag undefined) (Just "hello")
*DTContexts> baz (MkGADTBag (undefined :: String)) (Just "hello")
*DTContexts> baz2 undefined (Just "hello")
*DTContexts> baz2 (MkGADTBag undefined) (Just "hello")
*DTContexts> baz2 (MkGADTBag (undefined :: String)) (Just "hello")
Whereas these two give the same type error at compile time * Couldn't match expected type ``[Char]'* No instance for (Eq (Int -> Int)) arising from a use of ``MkGADTBag'/ ``baz2' respectively [Edit: my initial Addit gave the wrong expression and wrong error message]:
*DTContexts> baz (MkGADTBag (undefined :: [Int -> Int])) (Just [(+ 1)])
*DTContexts> baz2 (MkGADTBag (undefined :: [Int -> Int])) (Just [(+ 1)])
So baz, baz2 are morally equivalent not just in that they return the same result for the same well-defined arguments; but also in that they exhibit the same behaviour for the same ill-defined arguments. Or they differ only in where the absence of an Eq instance gets reported?
#leftroundabout Before you've actually deconstructed the x value, there's no way of knowing that the MkGADTBag constructor indeed applies.
Yes there is: field label unGADTBag is defined if and only if there's a pattern match on MkGADTBag. (It would maybe be different if there were other constructors for the type -- especially if those also had a label unGADTBag.) Again, being undefined/lazy evaluation doesn't postpone the type-inference.
To be clear, by "[not] convincing" I mean: I can see the behaviour and the inferred types I'm getting. I don't see that laziness or potential undefinedness gets in the way of type inference. How could I expose a difference between baz, baz2 that would explain why they have different types?
Function calls never bring type class constraints in scope, only (strict) pattern matching does.
The comparison
unGADTBag x == fromJust y
is essentially a function call of the form
foo (unGADTBag x) (fromJust y)
where foo requires Eq a. That would morally be provided by unGADTBag x, but that expression is not yet evaluated! Because of laziness, unGADTBag x will be evaluated only when (and if) foo demands its first argument.
So, in order to call foo in this example we need its argument to be evaluated in advance. While Haskell could work like this, it would be a rather surprising semantics, where arguments are evaluated or not depending on whether they provide a type class constraint which is needed. Imagine more general cases like
foo (if cond then unGADTBag x else unGADTBag z) (fromJust y)
What should be evaluated here? unGADTBag x? unGADTBag y? Both? cond as well? It's hard to tell.
Because of these issues, Haskell was designed so that we need to manually require the evaluation of a GADT value like x using pattern matching.
Why can't the type for unGADTBag tell us Eq a?
Before you've actually deconstructed the x value, there's no way of knowing that the MkGADTBag constructor indeed applies. Sure, if it doesn't then you have other problems (bottom), but those might conceivably not surface. Consider
ignore :: a -> b -> b
ignore _ = id
baz2' :: GADTBag a -> Maybe [a] -> Bool
baz2' x y = ignore (unGADTBag x) (y==y)
Note that I could now invoke the function with, say, undefined :: GADTBag (Int->Int). Shouldn't be a problem since the undefined is ignored, right★? Problem is, despite Int->Int not having an Eq instance, I was able to write y==y, which y :: Maybe [Int->Int] can't in fact support.
So, we can't have that only mentioning unGADTBag is enough to spew the Eq a constraint into its surrounding scope. Instead, we must clearly delimit the scope of that constraint to where we've confirmed that the MkGADTBag constructor does apply, and a pattern match accomplishes that.
★If you're annoyed that my argument relies on undefined, note that the same issue arises also when there are multiple constructors which would bring different constraints into scope.
An alternative to a pattern-match that does work is this:
{-# LANGUAGE RankNTypes #-}
withGADTBag :: GADTBag a -> (Eq a => [a] -> b) -> b
withGADTBag (MkGADTBag x) f = f x
baz3 :: GADTBag a -> Maybe [a] -> Bool
baz3 x y = withGADTBag x (== fromJust y)
Response to edits
All of these give *** Exception: Prelude.undefined:
Yes of course they do, because you actually evaluate x == y in your function. So the function can only possibly yield non-⟂ if the inputs have a NF. But that's by no means the case for all functions.
Whereas these two give the same type error at compile time
Of course they do, because you're trying to wrap a value of non-Eq type in the MkGADTBag constructor, which explicitly requires that constraint (and allows you to explicitly unwrap it again!), whereas the GADTBag type doesn't require that constraint. (Which is kind of the whole point about this sort of encapsulation!)
Before you've actually deconstructed the x value, there's no way of knowing that the `MkGADTBag` constructor indeed applies.Yes there is: field label `unGADTBag` is defined if and only if there's a pattern match on `MkGADTBag`.
Arguably, that's the way field labels should work, but they don't, in Haskell. A field label is nothing but a function from the data type to the field type, and a nontotal function at that if there are multiple constructors.Yeah, Haskell records are one of the worst-designed features of the language. I personally tend to use field labels only for big, single-constructor, plain-old-data types (and even then I prefer using not the field labels directly but lenses derived from them).
Anyway though, I don't see how “field label is defined iff there's a pattern match” could even be implemented in a way that would allow your code to work the way you think it should. The compiler would have to insert the step of confirming that the constructor applies (and extracting its GADT-encapsulated constraint) somewhere. But where? In your example it's reasonably obvious, but in general x could inhabit a vast scope with lots of decision branches and you really don't want it to get evaluated in a branch where the constraint isn't actually needed.
Also keep in mind that when we argue with undefined/⟂ it's not just about actually diverging computations, more typically you're worried about computations that would simply take a long time (just, Haskell doesn't actually have a notion of “taking a long time”).
The way to think about this is OutsideIn(X) ... with local assumptions. It's not about undefinedness or lazy evaluation. A pattern match on a GADT constructor is outside, the RHS of the equation is inside. Constraints from the constructor are made available only locally -- that is only inside.
baz (MkGADTBag x) (Just y) = x == y
Has an explicit data constructor MkGADTBag outside, supplying an Eq a. The x == y raises a wanted Eq a locally/inside, which gets discharged from the pattern match. OTOH
baz2 x y = unGADTBag x == fromJust y
Has no explicit data constructor outside, so no context is supplied. unGADTBag has a Eq a, but that is deeper inside the l.h. argument to ==; type inference doesn't go looking deeper inside. It just doesn't. Then in the effective definition for unGADTBag
unGADTBag (MkGADTBag x) = x
there is an Eq a made available from the outside, but it cannot escape from the RHS into the type environment at a usage site for unGADTBag. It just doesn't. Sad!
The best I can see for an explanation is towards the end of the OutsideIn paper, Section 9.7 Is the emphasis on principal types well-justified? (A rhetorical question but my answer would me: of course we must emphasise principal types; type inference could get better principaled under some circumstances.) That last section considers this example
data R a where
RInt :: Int -> R Int
RBool :: Bool -> R Bool
RChar :: Char -> R Char
flop1 (RInt x) = x
there is a third type that is arguably more desirable [for flop1], and that type is R Int -> Int.
flop1's definition is of the same form as unGADTBag, with a constrained to be Int.
flop2 (RInt x) = x
flop2 (RBool x) = x
Unfortunately, ordinary polymorphic types are too weak to express this restriction [that a must be only Int or Bool] and we can only get Ɐa.R a -> a for flop2, which does not rule the application of flop2 to values of type R Char.
So at that point the paper seems to give up trying to refine better principal types:
In conclusion, giving up on some natural principal types in favor of more specialized types that eliminate more pattern match errors at runtime is appealing but does not quite work unless we consider a more expressive syntax of types. Furthermore it is far from obvious how to specify these typings in a high-level declarative specification.
"is appealing". It just doesn't.
I can see a general solution is difficult/impossible. But for use-cases of constrained Bags/Lists/Sets, the specification is:
All data constructors have the same constraint(s) on the datatype's parameters.
All constructors yield the same type (... -> T a or ... -> T [a] or ... -> T Int, etc).
Datatypes with a single constructor satisfy that trivially.
To satisfy the first bullet, for a Set type using a binary balanced tree, there'd be a non-obvious definition for the Nil constructor:
data OrdSet a where
SNode :: Ord a => OrdSet a -> a -> OrdSet a -> OrdSet a
SNil :: Ord a => OrdSet a -- seemingly redundant Ord constraint
Even so, repeating the constraint on every node and every terminal seems wasteful: it's the same constraint all the way down (which is unlike GADTs for EDSL abstract syntax trees); presumably each node carries a copy of exactly the same dictionary.
The best way to ensure same constraint(s) on every constructor could just be prefixing the constraint to the datatype:
data Ord a => OrdSet a where ...
And perhaps the constraint could go 'OutsideOut' to the environment that's accessing the tree.
Another possible approach is to use a PatternSynonym with an explicit signature giving a Required constraint.
pattern EqGADTBag :: Eq a => [a] -> GADTBag a -- that Eq a is the *Required*
pattern EqGADTBag{ unEqGADTBag } = MkGADTBag unEqGADTBag -- without sig infers Eq a only as *Provided*
That is, without that explicit sig:
*> :i EqGADTBag
pattern EqGADTBag :: () => Eq a => [a] -> GADTBag a
The () => Eq a => ... shows Eq a is Provided, arising from the GADT constructor.
Now we get both inferred baz, baz2 :: Eq a => GADTBag a -> Maybe [a] -> Bool:
baz (EqGADTBag x) (Just y) = x == y
baz2 x y = unEqGADTBag x == fromJust y
As a curiosity: it's possible to give those equations for baz, baz2 as well as those in the O.P. using the names from the GADT decl. GHC warns of overlapping patterns [correctly]; and does infer the constrained sig for baz.
I wonder if there's a design pattern here? Don't put constraints on the data constructor -- that is, don't make it a GADT. Instead declare a 'shadow' PatternSynonym with the Required/Provided constraints.
You can capture the constraint in a fold function, (Eq a => ..) says you can assume Eq a but only within the function next (which is defined after a pattern match). If you instantiate next as = fromJust maybe == as it uses this constraint to witness equality
-- local constraint
-- |
-- vvvvvvvvvvvvvvvvvv
foldGADTBag :: (Eq a => [a] -> res) -> GADTBag a -> res
foldGADTBag next (MkGADTBag as) = next as
baz3 :: GADTBag a -> Maybe [a] -> Bool
baz3 gadtBag maybe = foldGADTBag (fromJust maybe ==) gadtBag
type Ty :: Type -> Type
data Ty a where
TyInt :: Int -> Ty Int
TyUnit :: Ty ()
-- locally assume Int locally assume unit
-- | |
-- vvvvvvvvvvvvvvvvvvv vvvvvvvvvvvvv
foldTy :: (a ~ Int => a -> res) -> (a ~ () => res) -> (Ty a -> res)
foldTy int unit (TyInt i) = int i
foldTy int unit TyUnit = unit
eval :: Ty a -> a
eval = foldTy id ()

How to convert Dynamic to Forall something

I have a cache with Dynamic values. Some of them have the type Delayed a.
Normally when I access the cache, I know the type a, so it's not a problem, I can use fromDynamic to cast to Maybe a.
I would like to call a function which doesn't need to know anything about the type a on a list of Dynamic. (The method is cancel :: Delay a -> IO ()).
Is there a way to do so ?
Basically I need a way to do get from Dynamic to Forall a . Delayed a ?
Edit
For information, Delayed holds a pending asynchronous value and a MVar to start or Cancel it. It is equivalent to
data Delayed m a = Delayed { blocker :: MVar Bool, async :: Async m a }
Such values are stored in a cache (which use Dynamic and store other things). When displaying the cache status, I need to be able to get the status of Delayed value (which involve accessing the blocker but has nothing to do with the actual value.
A value of type forall a . X a is a value which can be instantiated to any of X Int, X Bool, X String, etc. Presumably, your cache stores values of many different types, but no single value is valid at every possible type parameter. What you actually need is a value of type exists a . Delayed a. However, Haskell doesn't have first-class existential quantifiers, so you must encode that type in some way. One particular encoding is:
castToDelayed :: (forall a . Typeable a => Delayed a -> r) -> Dynamic -> r
Assume that you have this function; then you can simply write castToDelayed cancel :: Dynamic -> IO (). Note that the function parameter to castToDelayed provides a Typeable constraint, but you can freely ignore that constraint (which is what cancel is doing). Also note this function must be partial due to its type alone (clearly not every Dynamic is a Delayed a for some a), so in real code, you should produce e.g. Maybe r instead. Here I will elide this detail and just throw an error.
How you actually write this function will depend on which version of GHC you are using (the most recent, 8.2, or some older version). On 8.2, this is a very nice, simple function:
{-# LANGUAGE ViewPatterns #-}
-- NB: probably requires some other extensions
import Data.Dynamic
import Type.Reflection
castToDelayed :: (forall a . Typeable a => Delayed a -> r) -> Dynamic -> r
castToDelayed k (Dynamic (App (eqTypeRep (typeRep :: TypeRep Delayed) -> Just HRefl) a) x)
= withTypeable a (k x)
castToDelayed _ _ = error "Not a Delayed"
(Aside: at first I thought the Con pattern synonym would be useful here, but on deeper inspection it seems entirely useless. You must use eqTypeRep instead.)
Briefly, this function works as follows:
It pattern matches on the Dynamic value to obtain the actual value (of some existentially quantified type a) stored within, and the representation of its type (of type TypeRep a).
It pattern matches on the TypeRep a to determine if it is an application (using App). Clearly, Delayed a is the application of a type constructor, so that is the first thing we must check.
It compares the type constructor (the first argument to App) to the TypeRep corresponding to Delayed (note you must have an instance Typeable Delayed for this). If that comparison is successful, it pattern matches on the proof (that is Just HRefl) that the first argument to App and Delayed are in fact the same type.
At this point, the compiler knows that a ~ Delayed x for some x. So, you can call the function forall a . Typeable a => Delayed a -> r on the value x :: a. It must also provide the proof that x is Typeable, which is given precisely by a value of type TypeRep x - withTypeable reifies this value-level proof as a type-level constraint (alternatively, you could have the input function take as argument TypeRep a, or just omit the constrain altogether, since your specific use case doesn't need it; but this type is the most general possible).
On older versions, the principle is basically the same. However, TypeRep did not take a type parameter then; you can pattern match on it to discover if it is the TypeRep corresponding to Delayed, but you cannot prove to the compiler that the value stored inside the Dynamic has type Delayed x for some x. It will therefore require unsafeCoerce, at the step where you are applying the function k to the value x. Furthermore, there is no withTypeable before GHC 8.2, so you will have to write the function with type (forall a . Delayed a -> r) -> Dynamic -> r instead (which, fortunately, is enough for your use case); or implement such a function yourself (see the source of the function to see how; the implementation on older versions of GHC will be similar, but will have type TypeRep -> (forall a . Typeable a => Proxy a -> r) -> r instead).
Here is how you implement this in GHC < 8.2 (tested on 8.0.2). It is a horrible hack, and I make no claim it will correctly in all circumstances.
{-# LANGUAGE DeriveDataTypeable, MagicHash, ScopedTypeVariables, PolyKinds, ViewPatterns #-}
import Data.Dynamic
import Data.Typeable
import Unsafe.Coerce
import GHC.Prim (Proxy#)
import Data.Proxy
-- This part reifies a `Typeable' dictionary from a `TypeRep'.
-- This works because `Typeable' is a class with a single field, so
-- operationally `Typeable a => r' is the same as `(Proxy# a -> TypeRep) -> r'
newtype MagicTypeable r (kp :: KProxy k) =
MagicTypeable (forall (a :: k) . Typeable a => Proxy a -> r)
withTypeRep :: MagicTypeable r (kp :: KProxy k)
-> forall a . TypeRep -> Proxy a -> r
withTypeRep d t = unsafeCoerce d ((\_ -> t) :: Proxy# a -> TypeRep)
withTypeable :: forall r . TypeRep -> (forall (a :: k) . Typeable a => Proxy a -> r) -> r
withTypeable t k = withTypeRep (MagicTypeable k) t Proxy
-- The type constructor for Delayed
delayed_tycon = fst $ splitTyConApp $ typeRep (Proxy :: Proxy Delayed)
-- This is needed because Dynamic doesn't export its constructor, and
-- we need to pattern match on it.
data DYNAMIC = Dynamic TypeRep Any
unsafeViewDynamic :: Dynamic -> DYNAMIC
unsafeViewDynamic = unsafeCoerce
-- The actual implementation, much the same as the one on GHC 8.2, but more
-- 'unsafe' things
castToDelayed :: (forall a . Typeable a => Delayed a -> r) -> Dynamic -> r
castToDelayed k (unsafeViewDynamic -> Dynamic t x) =
case splitTyConApp t of
(((== delayed_tycon) -> True), [a]) ->
withTypeable a $ \(_ :: Proxy (a :: *)) -> k (unsafeCoerce x :: Delayed a)
_ -> error "Not a Delayed"
I don't know what Delayed actually is, but lets assume it's defined as follows for testing purposes:
data Delayed a = Some a | None deriving (Typeable, Show)
Then consider this simple test case:
test0 :: Typeable a => Delayed a -> String
test0 (Some x) = maybe "not a String" id $ cast x
test0 None = "None"
test0' =
let c = castToDelayed test0 in
[ c (toDyn (None :: Delayed Int))
, c (toDyn (Some 'a'))
, c (toDyn (Some "a")) ]
Why not define
{-# LANGUAGE ExistentialQuantification #-}
data Delayed' = forall a. Delayed' (Delayed a)
and then store than in the Dynamic? You can then cast it out of the dynamic, case on it, and pass the result to cancel. (Depending on what your use case is you may no longer even need the Dynamic.)

How can I write self-application function in Haskell?

I tried following code, but it generates type errors.
sa f = f f
• Occurs check: cannot construct the infinite type: t ~ t -> t1
• In the first argument of ‘f’, namely ‘f’
In the expression: f f
In an equation for ‘sa’: sa f = f f
• Relevant bindings include
f :: t -> t1
(bound at fp-through-lambda-calculus-michaelson.hs:9:4)
sa :: (t -> t1) -> t1
(bound at fp-through-lambda-calculus-michaelson.hs:9:1)
Use a newtype to construct the infinite type.
newtype Eventually a = NotYet (Eventually a -> a)
sa :: Eventually a -> a
sa eventually#(NotYet f) = f eventually
In GHC, eventually and f will be the same object in memory.
I don't think there is a single self-application function that will work for all terms in Haskell. Self-application is a peculiar thing in typed lambda calculus, which will often evade typing. This is related to the fact that with self-application we can express the fixed-point combinator, which introduces inconsistencies into the type system when viewed as a logical system (see Curry-Howard correspondence).
You asked about applying it to the id function. In the self application id id, the two ids have different types. More explicitly it's (id :: (A -> A) -> (A -> A)) (id :: A -> A) (for any type A). We could make a self-application specifically designed for the id function:
sa :: (forall a. a -> a) -> b -> b
sa f = f f
ghci> :t sa id
sa id :: b -> b
which works just fine, but is rather limited by its type.
Using RankNTypes you can make families of self-application functions like this, but you're not going to be able to make a general self-application function such that sa t will be well-typed iff t t is well-typed (at least not in System Fω ("F-omega"), which GHC's core calculus is based on).
The reason, if you work it out formally (probably), is that then we could get sa sa, which has no normal form, and Fω is known to be normalizing (until we add fix of course).
This is because the untyped lambda calculus is in some way more powerful than Haskell. Or, to put it differently, the untyped lambda calculus has no type system. Thus, it has no sound type system. Whereas Haskell does have one.
This shows up not only with self application, but in any cases where infinite types are involved. Try this, for example:
i x = x
s f g x = f x (g x)
s i i
It is astonishing how the type system finds out that the seemingly harmless expresion s i i should not be allowed with a sound type system. Because, if it were allowed, self application would be possible.

When are type signatures necessary in Haskell?

Many introductory texts will tell you that in Haskell type signatures are "almost always" optional. Can anybody quantify the "almost" part?
As far as I can tell, the only time you need an explicit signature is to disambiguate type classes. (The canonical example being read . show.) Are there other cases I haven't thought of, or is this it?
(I'm aware that if you go beyond Haskell 2010 there are plenty for exceptions. For example, GHC will never infer rank-N types. But rank-N types are a language extension, not part of the official standard [yet].)
Polymorphic recursion needs type annotations, in general.
f :: (a -> a) -> (a -> b) -> Int -> a -> b
f f1 g n x =
if n == (0 :: Int)
then g x
else f f1 (\z h -> g (h z)) (n-1) x f1
(Credit: Patrick Cousot)
Note how the recursive call looks badly typed (!): it calls itself with five arguments, despite f having only four! Then remember that b can be instantiated with c -> d, which causes an extra argument to appear.
The above contrived example computes
f f1 g n x = g (f1 (f1 (f1 ... (f1 x))))
where f1 is applied n times. Of course, there is a much simpler way to write an equivalent program.
Monomorphism restriction
If you have MonomorphismRestriction enabled, then sometimes you will need to add a type signature to get the most general type:
{-# LANGUAGE MonomorphismRestriction #-}
-- myPrint :: Show a => a -> IO ()
myPrint = print
main = do
myPrint ()
myPrint "hello"
This will fail because myPrint is monomorphic. You would need to uncomment the type signature to make it work, or disable MonomorphismRestriction.
Phantom constraints
When you put a polymorphic value with a constraint into a tuple, the tuple itself becomes polymorphic and has the same constraint:
myValue :: Read a => a
myValue = read "0"
myTuple :: Read a => (a, String)
myTuple = (myValue, "hello")
We know that the constraint affects the first part of the tuple but does not affect the second part. The type system doesn't know that, unfortunately, and will complain if you try to do this:
myString = snd myTuple
Even though intuitively one would expect myString to be just a String, the type checker needs to specialize the type variable a and figure out whether the constraint is actually satisfied. In order to make this expression work, one would need to annotate the type of either snd or myTuple:
myString = snd (myTuple :: ((), String))
In Haskell, as I'm sure you know, types are inferred. In other words, the compiler works out what type you want.
However, in Haskell, there are also polymorphic typeclasses, with functions that act in different ways depending on the return type. Here's an example of the Monad class, though I haven't defined everything:
class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
fail :: String -> m a
We're given a lot of functions with just type signatures. Our job is to make instance declarations for different types that can be treated as Monads, like Maybe t or [t].
Have a look at this code - it won't work in the way we might expect:
return 7
That's a function from the Monad class, but because there's more than one Monad, we have to specify what return value/type we want, or it automatically becomes an IO Monad. So:
return 7 :: Maybe Int
-- Will return...
Just 7
return 6 :: [Int]
-- Will return...
[6]
This is because [t] and Maybe have both been defined in the Monad type class.
Here's another example, this time from the random typeclass. This code throws an error:
random (mkStdGen 100)
Because random returns something in the Random class, we'll have to define what type we want to return, with a StdGen object tupelo with whatever value we want:
random (mkStdGen 100) :: (Int, StdGen)
-- Returns...
(-3650871090684229393,693699796 2103410263)
random (mkStdGen 100) :: (Bool, StdGen)
-- Returns...
(True,4041414 40692)
This can all be found at learn you a Haskell online, though you'll have to do some long reading. This, I'm pretty much 100% certain, it the only time when types are necessary.

Using quickCheck

I wrote an implementation for foldl and wanted to check if it worked, I tried some cases and it seems to be working well but I want to make sure.
I read about quickCheck and tried it, but I can't seem to make it work, this is the code
foldl'' :: (b -> a -> b) -> b -> [a] -> b
test :: Eq b => (b -> a -> b) -> b -> [a] -> Bool
test f e ls = foldl'' f e ls == foldl f e ls
when I run quickCheck test it throws the following error:
No instance for (Show (b0 -> a0 -> b0))
arising from a use of `quickCheck'
Possible fix:
add an instance declaration for (Show (b0 -> a0 -> b0))
In the expression: quickCheck prueba
In an equation for `it': it = quickCheck prueba
Your property requires three inputs: a function, an element and a list. The problem is that QuickCheck does not know how to deal with functions in general.
One of the things QuickCheck needs to work, is the ability to write failing test cases to the console. For this, it needs values it can turn into a String--anything in the Show class. Since functions are not in Show, it can't use them for inputs. That's where your error message comes from.
In general, using randomly generated functions for testing is going to be pretty tricky. I'd just write some concrete functions instead and let QuickCheck randomly generate the starting value and the list of elements.
There is a way to avoid the Show constraint on inputs using the Blind modifier, which will let you use QuickCheck's machinery for generating random functions.
-- Using Int instead of a, b which would be defaulted to () in GHCi
prueba :: Blind (Int -> Int -> Int) -> Int -> [Int] -> Bool
prueba (Blind f) e ls = foldl'' f e ls == foldl f e ls
That said, this means the failure output is nearly useless for debugging, as it will just print (*) for the blind input. (For demonstration, I defined foldl'' = foldr . flip)
> quickCheck prueba
*** Failed! Falsifiable (after 4 tests and 2 shrinks):
(*)
0
[1,0]
From what I understand, there is machinery for creating random functions in QuickCheck (see Test.QuickCheck.Function), but I can't say that I known this stuff well enough to tell you how to use it.
That being said, testing your property likely makes more sense with functions you choose yourself, so you could write something like quickCheck $ prueba (+), which will work fine.

Resources