Is there a way to create functions with implicit parameters or let bindings with implicit parameters using template haskell?
I.e. is it possible to generate a signature like this using template haskell:
doSomething :: (?context :: Context) => m a
Or an invocation like this:
invoc = let ?context = newContext in doSomething
I could not find suitable algebraic data types nor any functions which would help me out on this topic in the API documentation for template haskell. I'm using GHC 7.4.2.
If there is no native support for this extension in template haskell, is there some other possibility to inject code during compilation (maybe something like a general “code injection function” within template haskell?).
EDIT: I tried the suggestion from the comments, this is what happens:
runQ [d| f :: (?c :: String) => Int ; f = 7 |]
<interactive>:10:17: parse error on input `c'
whereas this works:
runQ [d| f :: Int ; f = 7|]
[SigD f_0 (ConT GHC.Types.Int),ValD (VarP f_0) (NormalB (LitE (IntegerL 7))) []]
doesn't seem to be supported.
Here's one way that's pretty fragile, but sort of works. While you can't refer
to ?x in the Exp that template haskell uses, you can refer to a definition in
another module like:
reserved_prefix_x = ?x
Below is some code that generates variables like above in one run of ghc,
and in a second run of ghc the variables actually refer to implicit parameters.
{-# LANGUAGE TemplateHaskell, NoMonomorphismRestriction #-}
module GenMod (h) where
import Data.Generics
import Data.IORef
import Data.List
import Language.Haskell.Meta.Parse as P
import Language.Haskell.TH
import Language.Haskell.TH.Quote
import Language.Haskell.TH.Syntax
import qualified Data.Set as S
import qualified Language.Haskell.Exts.QQ as Q
import System.IO.Unsafe
h = Q.hs { quoteExp = \s -> do
r <- either fail (upVars . return) (P.parseExp s)
writeMod'
return r
}
pfx = "q_"
{-# NOINLINE vars #-}
vars :: IORef (S.Set String)
vars = unsafePerformIO (newIORef S.empty)
writeMod' = runIO $ writeFile "GEN.hs" . ppMod =<< readIORef vars
writeMod = -- might be needed to avoid multiple calls to writeFile?
-- in this example this is called for every use of `h'
QuasiQuoter { quoteDec = \ _ -> do
writeMod'
[d| _ = () |] }
ppMod xs = "{-# LANGUAGE NoMonomorphismRestriction, ImplicitParams #-}\n\
\module GEN where\n" ++
unlines (map (\x -> pfx ++ x ++ " = ?" ++ x) (S.toList xs))
upVars x = do
x' <- x
runIO $ modifyIORef vars (S.union (getMatchingVars x'))
runIO $ print =<< readIORef vars
return x'
getMatchingVars =
everything
S.union
(mkQ S.empty
(\ (OccName x) -> maybe S.empty S.singleton (stripPrefix pfx x)))
A Main.hs file that uses the quasiquoter GenMod.hs:
{-# LANGUAGE NoMonomorphismRestriction, ImplicitParams, QuasiQuotes, TemplateHaskell, CPP #-}
import GenMod
#ifndef stage1
import GEN
#endif
f_ = [h| q_hithere |]
You have to call ghc twice, like:
ghci -Dstage1 Main.hs
GHCi, version 7.6.1: http://www.haskell.org/ghc/ :? for help
[1 of 2] Compiling GenMod ( GenMod.hs, interpreted )
[2 of 2] Compiling Main ( Ex.hs, interpreted )
fromList ["hithere"]
Ex.hs:8:6: Not in scope: `q_hithere'
Failed, modules loaded: GenMod.
Though ghc fails, it still generates the GEN.hs which contains:
{-# LANGUAGE NoMonomorphismRestriction, ImplicitParams #-}
module GEN where
q_hithere = ?hithere
Which will be there when you load Main (leaving out the -D flag)
*Main> :t f_
f_ :: (?hithere::t) => t
This kind of trouble probably isn't worth it. Maybe other situations of calling out to other programs from TH are more motivating such as inline calls to other languages http://hpaste.org/50837 (gfortran example)
Since I used haskell-src-meta's default parser, the quasiquote gets to use variables "reserved_prefix_x" not "?x". It should be possible to accept the "?x" without too much difficulty.
Related
I've generated a list of assertions I'd like to have run.
Here's an interesting case. In the script below, a list of pairs of strings are generated with the entries in the pairs never being equal (namePairs). An assertion should throw an error if one of the strings is a substring of the other string in the pair. I've played around with the script enough to notice that it will throw an error if you encounter foo (which happens when head is used, as shown), or an error will be shown if you replace head with last, but in this case it will occur for bar - the last string in the list). But this only works if I leave off the i =/ j guard, which is not what I want, but helped me to identify the issue. If the guard is left in, then no error is thrown since these cases were the cases where i == j.
I saw How to force evaluation in Haskell?, but despite using the BangPatterns approach described there, I've not been able to get this to work, despite the cargo-cult level of usage.
#!/usr/bin/env stack
{- stack script --nix --resolver lts-14.20
--nix-packages zlib
--no-nix-pure
--package non-empty-text
--package text
--package time
-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Main where
import Data.Maybe
import Data.List (isSubsequenceOf)
import Data.Text (Text)
import qualified Data.Text as DT
import qualified Data.Text.Lazy as DTL
import qualified Data.Text.IO as DTIO
entryKeys :: [Text]
entryKeys = filter (\t -> DT.length t > 0) $ DT.split (==' ')
"foo DIBBsMain DIBBsContainers DIBBs bar"
main :: IO ()
main = do
putStrLn $ show entryKeys
!_ <- entryNameCheck entryKeys
pure ()
entryNameCheck :: [Text] -> IO ()
entryNameCheck !eNames = do
putStrLn $ show namePairs
!x <- pure $ checkPair <$> namePairs
pure $ head x
where
!lStr = DT.unpack . DT.toLower
!namePairs = [(lStr i, lStr j) | i <- eNames, j <- eNames, i /= j]
errmsg !ns = "!! " <> fst ns <> " is a substring of " <> snd ns
checkPair !p = assertOrErr ((not $ isSubsequenceOf (fst p) (snd p))) (errmsg p)
assertOrErr :: Bool -> String -> ()
assertOrErr !cond !msg = if cond then () else error msg
I've re-posted this question to focus more tightly on the specific error, and to better enumerate what I've already tried.
I'm trying to parse some Haskell code during the runtime of a Haskell program using the hint package.
The outer program compiles, but when I run it the inner compilation step fails. I'm getting a description of what I assume is a syntax problem, and a location in the "interactive" code, but I have no idea how to view the code in question.
Here's Main.hs
module Main where
import Data.List (intercalate)
import Polysemy (runM)
import qualified Language.Haskell.Interpreter as H
import qualified Effects as E
handleFailures :: Either H.InterpreterError a -> IO a
handleFailures (Left l) = ioError $ userError $ message l
where
message (H.WontCompile es) = intercalate "\n" (header : map unbox es)
message e = show e
header = "ERROR: Won't compile:"
unbox (H.GhcError e) = e
handleFailures (Right a) = return a
interpretation :: String -> H.Interpreter E.MyEffect
interpretation s = do
H.loadModules ["Effects"]
H.setImportsQ [("Prelude", Nothing), ("Effects", Nothing)]
effect <- H.interpret s (H.as :: E.MyEffect)
return effect
extractProgram :: String -> IO E.MyEffect
extractProgram s = do
p <- H.runInterpreter $ interpretation s
success <- handleFailures p
return success
main :: IO ()
main = do
userProvided <- readFile "UserProvided.hs"
userProgram <- extractProgram userProvided
runM . E.teletypeToIO . E.teletypePlusToIO $ userProgram
Effects.hs defines and provides helpers for a Polysemey Sem monad called MyEffect.
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE LambdaCase, BlockArguments #-}
{-# LANGUAGE GADTs, FlexibleContexts, TypeOperators, DataKinds, PolyKinds, ScopedTypeVariables #-}
module Effects where
import Polysemy
data Teletype m a where
ReadTTY :: Teletype m String
WriteTTY :: String -> Teletype m ()
makeSem ''Teletype
teletypeToIO :: Member (Embed IO) r => Sem (Teletype ': r) a -> Sem r a
teletypeToIO = interpret $ \case
ReadTTY -> embed getLine
WriteTTY msg -> embed $ putStrLn msg
data TeletypePlus m a where
ReadPlus :: TeletypePlus m String
WritePlus :: String -> TeletypePlus m ()
makeSem ''TeletypePlus
teletypePlusToIO :: Member (Embed IO) r => Sem (TeletypePlus ': r) a -> Sem r a
teletypePlusToIO = interpret $ \case
ReadPlus -> embed $ ("+" <>) <$> getLine
WritePlus msg -> embed $ putStrLn $ msg <> "+"
type MyEffect = Sem [TeletypePlus, Teletype, Embed IO] ()
UserProvided.hs contains a simple do expression in MyEffect.
do
i <- readTTY
j <- readPlus
let k = i <> j
writeTTY k
writePlus k
In order to get the polysemy package available at runtime, I have to enter run it from inside a cabal sandbox.
$ cabal build
Build profile: -w ghc-8.8.1 -O1
In order, the following will be built (use -v for more details):
- Hello-Polysemy-0.1.0.0 (exe:Hello-Polysemy) (file Main.hs changed)
Preprocessing executable 'Hello-Polysemy' for Hello-Polysemy-0.1.0.0..
Building executable 'Hello-Polysemy' for Hello-Polysemy-0.1.0.0..
[2 of 2] Compiling Main ( Main.hs, /home/mako/Git/Hello-Polysemy/dist-newstyle/buil/x86_64-linux/ghc-8.8.1/Hello-Polysemy-0.1.0.0/x/Hello-Polysemy/build/Hello-Polysemy/Hello-Polysemy-tmp/Main.o )
Linking /home/mako/Git/Hello-Polysemy/dist-newstyle/build/x86_64-linux/ghc-8.8.1/Hello-Polysemy-0.1.0.0/x/Hello-Polysemy/build/Hello-Polysemy/Hello-Polysemy ...
$ cabal exec bash
... but then ...
$ cabal run
Up to date
Hello-Polysemy: user error (ERROR: Won't compile:
<interactive>:10:135: error:
Operator applied to too few arguments: :)
So far as I can tell the only place I'm using the : operator is in Effects.hs, where (a) I'm actually using the type-operator ':, and (b) compilation succeeds just fine when Effects is imported into Main.hs.
Any suggestions for what the problem might be, or how I could learn more?
I already tried using Language.Haskell.Interpreter.Unsafe.unsafeRunInterpreterWithArgs ["-v4"]. That clarifies that it's talking about ghc-prim:GHC.Types.:{(w) d 66}), but I don't know what to do with that information.
Update:
I've tried various permutations of in-lining the "userProvided" code.
declaring the exact same Effect value inline in Main works fine. Replacing the string read from the file with an inline string of an even simpler value "writePlus \"asdf\"" doesn't change the error message.
I'm looking for a function that does what the GHCi :type command does.
Ideally, it would have a signature something like
getStaticType :: a -> String
a = getStaticType (1+2)
-- a = "(Num t) => t"
b = getStaticType zipWith
-- b = "(a -> b -> c) -> [a] -> [b] -> [c]"
(Note: this has nothing to do with Data.Dynamic. I just want the static type inferred from the compiler. In fact the function wouldn't need a runtime implementation at all, as all calls to it could be inlined as constants at compile time. I'm assuming it exists somewhere, since GHCi can do it)
You can do it like this:
import Data.Typeable
getStaticType :: Typeable a => a -> String
getStaticType = show . typeOf
Note that the type must be an instance of Typeable. You can derive Typeable automatically using the DeriveDataTypeable Haskell language extension and ... deriving (Typeable, ...).
Also note that polymorphic types cannot be identified in this way; you must always call a function with a specific type, so you can never get that polymorphic type information that you get in GHCi with compiled Haskell code.
The way GHCi does it is that it uses the GHC API to analyse an intermediary Haskell abstract syntax tree (AST) that contains type information. GHCi does not have the same restricted environment that your typical compiled Haskell program does; it can do lots of stuff to find out more information about its environment.
With TemplateHaskell, you can do it like this; first, create this module:
module TypeOf where
import Control.Monad
import Language.Haskell.TH
import Language.Haskell.TH.Syntax
getStaticType :: Name -> Q Exp
getStaticType = lift <=< fmap pprint . reify
Then, in a different module (very important), you can do the following:
{-# LANGUAGE TemplateHaskell #-}
import TypeOf
main = putStrLn $(getStaticType 'zipWith)
This program outputs:
GHC.List.zipWith :: forall a_0 b_1 c_2 . (a_0 -> b_1 -> c_2) ->
[a_0] -> [b_1] -> [c_2]
You can use a better pretty-printer than the pprint function; take a look at the Language.Haskell.TH.Ppr module.
try http://www.haskell.org/haskellwiki/GHC/As_a_library
typed targetFile targetModule = do
defaultErrorHandler defaultFatalMessager defaultFlushOut $ do
runGhc (Just libdir) $ do
dflags <- getSessionDynFlags
let dflags' = xopt_set dflags Opt_ImplicitPrelude
setSessionDynFlags dflags'
target <- guessTarget targetFile Nothing
setTargets [target]
load LoadAllTargets
m <- getModSummary $ mkModuleName targetModule
p <- parseModule m
t <- typecheckModule p
return $ typecheckedSource d
Is it possible to generate and run TemplateHaskell generated code at runtime?
Using C, at runtime, I can:
create the source code of a function,
call out to gcc to compile it to a .so (linux) (or use llvm, etc.),
load the .so and
call the function.
Is a similar thing possible with Template Haskell?
Yes, it's possible. The GHC API will compile Template Haskell. A proof-of-concept is available at https://github.com/JohnLato/meta-th, which, although not very sophisticated, shows one general technique that even provides a modicum of type safety. Template Haskell expressions are build using the Meta type, which can then be compiled and loaded into a usable function.
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# OPTIONS_GHC -Wall #-}
module Data.Meta.Meta (
-- * Meta type
Meta (..)
-- * Functions
, metaCompile
) where
import Language.Haskell.TH
import Data.Typeable as Typ
import Control.Exception (bracket)
import System.Plugins -- from plugins
import System.IO
import System.Directory
newtype Meta a = Meta { unMeta :: ExpQ }
-- | Super-dodgy for the moment, the Meta type should register the
-- imports it needs.
metaCompile :: forall a. Typeable a => Meta a -> IO (Either String a)
metaCompile (Meta expr) = do
expr' <- runQ expr
-- pretty-print the TH expression as source code to be compiled at
-- run-time
let interpStr = pprint expr'
typeTypeRep = Typ.typeOf (undefined :: a)
let opener = do
(tfile, h) <- openTempFile "." "fooTmpFile.hs"
hPutStr h (unlines
[ "module TempMod where"
, "import Prelude"
, "import Language.Haskell.TH"
, "import GHC.Num"
, "import GHC.Base"
, ""
, "myFunc :: " ++ show typeTypeRep
, "myFunc = " ++ interpStr] )
hFlush h
hClose h
return tfile
bracket opener removeFile $ \tfile -> do
res <- make tfile ["-O2", "-ddump-simpl"]
let ofile = case res of
MakeSuccess _ fp -> fp
MakeFailure errs -> error $ show errs
print $ "loading from: " ++ show ofile
r2 <- load (ofile) [] [] "myFunc"
print "loaded"
case r2 of
LoadFailure er -> return (Left (show er))
LoadSuccess _ (fn :: a) -> return $ Right fn
This function takes an ExpQ, and first runs it in IO to create a plain Exp. The Exp is then pretty-printed into source code, which is compiled and loaded at run-time. In practice, I've found that one of the more difficult obstacles is specifying the correct imports in the generated TH code.
From what I understand you want to create and run a code at runtime which I think you can do using GHC API but I am not very sure of the scope of what you can achieve. If you want something like hot code swapping you can look at the package hotswap.
I'm looking for a function that does what the GHCi :type command does.
Ideally, it would have a signature something like
getStaticType :: a -> String
a = getStaticType (1+2)
-- a = "(Num t) => t"
b = getStaticType zipWith
-- b = "(a -> b -> c) -> [a] -> [b] -> [c]"
(Note: this has nothing to do with Data.Dynamic. I just want the static type inferred from the compiler. In fact the function wouldn't need a runtime implementation at all, as all calls to it could be inlined as constants at compile time. I'm assuming it exists somewhere, since GHCi can do it)
You can do it like this:
import Data.Typeable
getStaticType :: Typeable a => a -> String
getStaticType = show . typeOf
Note that the type must be an instance of Typeable. You can derive Typeable automatically using the DeriveDataTypeable Haskell language extension and ... deriving (Typeable, ...).
Also note that polymorphic types cannot be identified in this way; you must always call a function with a specific type, so you can never get that polymorphic type information that you get in GHCi with compiled Haskell code.
The way GHCi does it is that it uses the GHC API to analyse an intermediary Haskell abstract syntax tree (AST) that contains type information. GHCi does not have the same restricted environment that your typical compiled Haskell program does; it can do lots of stuff to find out more information about its environment.
With TemplateHaskell, you can do it like this; first, create this module:
module TypeOf where
import Control.Monad
import Language.Haskell.TH
import Language.Haskell.TH.Syntax
getStaticType :: Name -> Q Exp
getStaticType = lift <=< fmap pprint . reify
Then, in a different module (very important), you can do the following:
{-# LANGUAGE TemplateHaskell #-}
import TypeOf
main = putStrLn $(getStaticType 'zipWith)
This program outputs:
GHC.List.zipWith :: forall a_0 b_1 c_2 . (a_0 -> b_1 -> c_2) ->
[a_0] -> [b_1] -> [c_2]
You can use a better pretty-printer than the pprint function; take a look at the Language.Haskell.TH.Ppr module.
try http://www.haskell.org/haskellwiki/GHC/As_a_library
typed targetFile targetModule = do
defaultErrorHandler defaultFatalMessager defaultFlushOut $ do
runGhc (Just libdir) $ do
dflags <- getSessionDynFlags
let dflags' = xopt_set dflags Opt_ImplicitPrelude
setSessionDynFlags dflags'
target <- guessTarget targetFile Nothing
setTargets [target]
load LoadAllTargets
m <- getModSummary $ mkModuleName targetModule
p <- parseModule m
t <- typecheckModule p
return $ typecheckedSource d