Can I differentiate between typeclass instances at runtime? - haskell

Is it possible to implement a type class as follows:
class SomeClass e where
isEq :: (SomeClass e') => e -> e' -> Bool
where isEq x y would return true when x and y are both the same instance of this type class?
Context: This is a thinly-veiled attempt at getting run-time type tests. While at first I read that Haskell has type erasure, I've also read that with recent extensions to GHC, some run-time information in there.
edit: for those wondering about my usecase... I've been using type-level programming to ensure certain properties of some of my ADTs, namely involving resource usage. These resources are represented by distinct types (and resource locks are accordingly implemented at type level).
I'm attempting to write an optimisation procedure that requires identification of resource writing/reading. But since all my resources are represented by distinct singletons, whose only common factor (apart from all values being bottom) is the typeclass which groupes them together.
In a nutshell I want to use the results of my type-level programming at a run-time, value level.

You can do this, as hinted at by Karolis Juodelė, with Data.Typeable:
Prelude Data.Typeable> :{
Prelude Data.Typeable| let isEq :: (Typeable a , Typeable b) => a -> b -> Bool
Prelude Data.Typeable| isEq x y = typeOf x == typeOf y
Prelude Data.Typeable| :}
Prelude Data.Typeable> isEq True ()
False
Prelude Data.Typeable> isEq True False
True
The question is: Why would you not know at run time what the types are, and then why would you care about whether they are equal – can you elaborate your use case?

Related

How can Haskell integer literals be comparable without being in the Eq class?

In Haskell (at least with GHC v8.8.4), being in the Num class does NOT imply being in the Eq class:
$ ghci
GHCi, version 8.8.4: https://www.haskell.org/ghc/ :? for help
λ>
λ> let { myEqualP :: Num a => a -> a -> Bool ; myEqualP x y = x==y ; }
<interactive>:6:60: error:
• Could not deduce (Eq a) arising from a use of ‘==’
from the context: Num a
bound by the type signature for:
myEqualP :: forall a. Num a => a -> a -> Bool
at <interactive>:6:7-41
Possible fix:
add (Eq a) to the context of
the type signature for:
myEqualP :: forall a. Num a => a -> a -> Bool
• In the expression: x == y
In an equation for ‘myEqualP’: myEqualP x y = x == y
λ>
It seems this is because for example Num instances can be defined for some functional types.
Furthermore, if we prevent ghci from overguessing the type of integer literals, they have just the Num type constraint:
λ>
λ> :set -XNoMonomorphismRestriction
λ>
λ> x=42
λ> :type x
x :: Num p => p
λ>
Hence, terms like x or 42 above have no reason to be comparable.
But still, they happen to be:
λ>
λ> y=43
λ> x == y
False
λ>
Can somebody explain this apparent paradox?
Integer literals can't be compared without using Eq. But that's not what is happening, either.
In GHCi, under NoMonomorphismRestriction (which is default in GHCi nowadays; not sure about in GHC 8.8.4) x = 42 results in a variable x of type forall p :: Num p => p.1
Then you do y = 43, which similarly results in the variable y having type forall q. Num q => q.2
Then you enter x == y, and GHCi has to evaluate in order to print True or False. That evaluation cannot be done without picking a concrete type for both p and q (which has to be the same). Each type has its own code for the definition of ==, so there's no way to run the code for == without deciding which type's code to use.3
However each of x and y can be used as any type in Num (because they have a definition that works for all of them)4. So we can just use (x :: Int) == y and the compiler will determine that it should use the Int definition for ==, or x == (y :: Double) to use the Double definition. We can even do this repeatedly with different types! None of these uses change the type of x or y; we're just using them each time at one of the (many) types they support.
Without the concept of defaulting, a bare x == y would just produce an Ambiguous type variable error from the compiler. The language designers thought that would be extremely common and extremely annoying with numeric literals in particular (because the literals are polymorphic, but as soon as you do any operation on them you need a concrete type). So they introduced rules that some ambiguous type variables should be defaulted to a concrete type if that allows compilation to continue.5
So what is actually happening when you do x == y is that the compiler is just picking Integer to use for x and y in that particular expression, because you haven't given it enough information to pin down any particular type (and because the defaulting rules apply in this situation). Integer has an Eq instance so it can use that, even though the most general types of x and y don't include the Eq constraint. Without picking something it couldn't possibly even attempt to call == (and of course the "something" it picks has to be in Eq or it still won't work).
If you turn on -Wtype-defaults (which is included in -Wall), the compiler will print a warning whenever it applies defaulting6, which makes the process more visible.
1 The forall p part is implicit in standard Haskell, because all type variables are automatically introduced with forall at the beginning of the type expression in which they appear. You have to turn on extensions to even write the forall manually; either ExplicitForAll just for the ability to write forall, or any one of the many extensions that actually add functionality that makes forall useful to write explicitly.
2 GHCi will probably pick p again for the type variable, rather than q. I'm just using a different one to emphasise that they're different variables.
3 Technically it's not each type that necessarily has a different ==, but each Eq instance. Some of those instances are polymorphic, so they apply to multiple types, but that only really comes up with types that have some structure (like Maybe a, etc). Basic types like Int, Integer, Double, Char, Bool, each have their own instance, and each of those instances has its own code for ==.
4 In the underlying system, a type like forall p. Num p => p is in fact much like a function; one that takes a Num instance for a concrete type as a parameter. To get a concrete value you have to first "apply the function" to a type's Num instance, and only then do you get an actual value that could be printed, compared with other things, etc. In standard Haskell these instance parameters are always invisibly passed around by the compiler; some extensions allow you to manipulate this process a little more directly.
This is the root of what's confusing about why x == y works when x and y are polymorphic variables. If you had to explicitly pass around the type/instance arguments it would be obvious what's going on here, because you would have to manually apply both x and y to something and compare the results.
5 The gist of the default rules is that if the constraints on an ambiguous type variable are:
all built-in classes
at least one of them is a numeric class (Num, Floating, etc)
then GHC will try Integer to see if that type checks and allows all other constraints to be resolved. If that doesn't work it will try Double, and if that doesn't work then it reports an error.
You can set the types it will try with a default declaration (the "default default" being default (Integer, Double)), but you can't customise the conditions under which it will try to default things, so changing the default types is of limited use in my experience.
GHCi however comes with extended default rules that are a bit more useful in an interpreter (because it has to do type inference line-by-line instead of on the whole module at once). You can turn those on in compiled code with ExtendedDefaultRules extension (or turn them off in GHCi with NoExtendedDefaultRules), but again, neither of those options is particularly useful in my experience. It's annoying that the interpreter and the compiler behave differently, but the fundamental difference between module-at-a-time compilation and line-at-a-time interpretation mean that switching either's default rules to work consistently with the other is even more annoying. (This is also why NoMonomorphismRestriction is in effect by default in the interpreter now; the monomorphism restriction does a decent job at achieving its goals in compiled code but is almost always wrong in interpreter sessions).
6 You can also use a typed hole in combination with the asTypeOf helper to get GHC to tell you what type it's inferring for a sub-expression like this:
λ :t x
x :: Num p => p
λ :t y
y :: Num p => p
λ (x `asTypeOf` _) == y
<interactive>:19:15: error:
• Found hole: _ :: Integer
• In the second argument of ‘asTypeOf’, namely ‘_’
In the first argument of ‘(==)’, namely ‘(x `asTypeOf` _)’
In the expression: (x `asTypeOf` _) == y
• Relevant bindings include
it :: Bool (bound at <interactive>:19:1)
Valid hole fits include
x :: forall p. Num p => p
with x
(defined at <interactive>:1:1)
it :: forall p. Num p => p
with it
(defined at <interactive>:10:1)
y :: forall p. Num p => p
with y
(defined at <interactive>:12:1)
You can see it tells us nice and simply Found hole: _ :: Integer, before proceeding with all the extra information it likes to give us about errors.
A typed hole (in its simplest form) just means writing _ in place of an expression. The compiler errors out on such an expression, but it tries to give you information about what you could use to "fill in the blank" in order to get it to compile; most helpfully, it tells you the type of something that would be valid in that position.
foo `asTypeOf` bar is an old pattern for adding a bit of type information. It returns foo but it restricts (this particular usage of) it to be the same type as bar (the actual value of bar is totally unused). So if you already have a variable d with type Double, x `asTypeOf` d will be the value of x as a Double.
Here I'm using asTypeOf "backwards"; instead of using the thing on the right to constrain the type of the thing on the left, I'm putting a hole on the right (which could have any type), but asTypeOf conveniently makes sure it's the same type as x without otherwise changing how x is used in the overall expression (so the same type inference still applies, including defaulting, which isn't always the case if you lift a small part of a larger expression out to ask GHCi for its type with :t; in particular :t x won't tell us Integer, but Num p => p).

Why is `succ i` valid where `i :: Num a => a` (and not an `Enum a`)?

This seems to apply to both GHCi and GHC. I'll show an example with GHCi first.
Given i type has been inferred as follows:
Prelude> i = 1
Prelude> :t i
i :: Num p => p
Given that succ is a function defined on Enum:
Prelude> :i Enum
class Enum a where
succ :: a -> a
pred :: a -> a
-- …OMITTED…
and that Num is not a 'subclass' (if I can use that term) of Enum:
class Num a where
(+) :: a -> a -> a
(-) :: a -> a -> a
-- …OMITTED…
why succ i does not return an error?
Prelude> succ i
2 -- works, no error
I would expect :type i to be inferred to something like:
Prelude> i = 1
Prelude> :type i
i :: (Enum p, Num p) => p
(I'm using 'GHC v. 8.6.3')
ADDITION:
After reading #RobinZigmond comment and #AlexeyRomanov answer I have noticed that 1 could be interpreted as one of many types and one of many classes.
Thanks to #AlexeyRomanov answer I understand much more about the defaulting-rules used to decide what type to use for ambiguous expressions.
However I don't feel that Alexey answer addresses exactly my question. My question is about the type of i. It's not about the type of succ i.
It's about the mismatch between succ argument type (an Enum a) and the apparent type of i (a Num a).
I'm now starting to realise that my question must stem from a wrong assumption: 'that once i is inferred to be i :: Num a => a, then i can be nothing else'. Hence I was puzzled to see succ i was evaluated without errors.
GHC also seems to be inferring Enum a in addition to what was explicitly declared.
x :: Num a => a
x = 1
y = succ x -- works
However it is not adding Enum a when the type variable appears as a function:
my_succ :: Num a => a -> a
my_succ z = succ z -- fails compilation
To me it seems that the type constraints attached to a function are stricter to the ones applied to a variable.
GHC is saying my_succ :: forall a. Num a => a -> a and given
forall a doesn't appear in the type-signature of neither i nor x I thought that meant GHC is not going to infer any more classes for my_succ types.
But this seems again wrong: I've checked this idea with the following (first time I type RankNTypes) and apparently GHC still infers Enum a:
{-# LANGUAGE RankNTypes #-}
x :: forall a. Num a => a
x = 1
y = succ x
So it seems that inference rules for functions are stricter than the ones for variables?
Yes, succ i's type is inferred as you expect:
Prelude> :t succ i
succ i :: (Enum a, Num a) => a
This type is ambiguous, but it satisfies the conditions in the defaulting rules for GHCi:
Find all the unsolved constraints. Then:
Find those that are of form (C a) where a is a type variable, and partition those constraints into groups that share a common type variable a.
In this case, there's only one group: (Enum a, Num a).
Keep only the groups in which at least one of the classes is an interactive class (defined below).
This group is kept, because Num is an interactive class.
Now, for each remaining group G, try each type ty from the default-type list in turn; if setting a = ty would allow the constraints in G to be completely solved. If so, default a to ty.
The unit type () and the list type [] are added to the start of the standard list of types which are tried when doing type defaulting.
The default default-type list (sic) is (with the additions from the last clause) default ((), [], Integer, Double).
So when you do Prelude> succ i to actually evaluate this expression (note :t doesn't evaluate the expression it gets), a is set to Integer (first of this list satisfying the constraints), and the result is printed as 2.
You can see it's the reason by changing the default:
Prelude> default (Double)
Prelude> succ 1
2.0
For the updated question:
I'm now starting to realise that my question must stem from a wrong assumption: 'that once i is inferred to be i :: Num a => a, then i can be nothing else'. Hence I was puzzled to see succ i was evaluated without errors.
i can be nothing else (i.e. nothing that doesn't fit this type), but it can be used with less general (more specific) types: Integer, Int. Even with many of them in an expression at once:
Prelude> (i :: Double) ^ (i :: Integer)
1.0
And these uses don't affect the type of i itself: it's already defined and its type fixed. OK so far?
Well, adding constraints also makes the type more specific, so (Num a, Enum a) => a is more specific than (Num a) => a:
Prelude> i :: (Num a, Enum a) => a
1
Because of course any type a that satisfies both constraints in (Num a, Enum a) satisfies just Num a.
However it is not adding Enum a when the type variable appears as a function:
That's because you specified a signature which doesn't allow it to. If you don't give a signature, there's no reason to infer Num constraint. But e.g.
Prelude> f x = succ x + 1
will infer the type with both constraints:
Prelude> :t f
f :: (Num a, Enum a) => a -> a
So it seems that inference rules for functions are stricter than the ones for variables?
It's actually the other way around due to the monomorphism restriction (not in GHCi, by default). You've actually been a bit lucky not to run into it here, but the answer is already long enough. Searching for the term should give you explanations.
GHC is saying my_succ :: forall a. Num a => a -> a and given forall a doesn't appear in the type-signature of neither i nor x.
That's a red herring. I am not sure why it's shown in one case and not the other, but all of them have that forall a behind the scenes:
Haskell type signatures are implicitly quantified. When the language option ExplicitForAll is used, the keyword forall allows us to say exactly what this means. For example:
g :: b -> b
means this:
g :: forall b. (b -> b)
(Also, you just need ExplicitForAll and not RankNTypes to write down forall a. Num a => a.)

Can a Haskell type constructor have non-type parameters?

A type constructor produces a type given a type. For example, the Maybe constructor
data Maybe a = Nothing | Just a
could be a given a concrete type, like Char, and give a concrete type, like Maybe Char. In terms of kinds, one has
GHCI> :k Maybe
Maybe :: * -> *
My question: Is it possible to define a type constructor that yields a concrete type given a Char, say? Put another way, is it possible to mix kinds and types in the type signature of a type constructor? Something like
GHCI> :k my_type
my_type :: Char -> * -> *
Can a Haskell type constructor have non-type parameters?
Let's unpack what you mean by type parameter. The word type has (at least) two potential meanings: do you mean type in the narrow sense of things of kind *, or in the broader sense of things at the type level? We can't (yet) use values in types, but modern GHC features a very rich kind language, allowing us to use a wide range of things other than concrete types as type parameters.
Higher-Kinded Types
Type constructors in Haskell have always admitted non-* parameters. For example, the encoding of the fixed point of a functor works in plain old Haskell 98:
newtype Fix f = Fix { unFix :: f (Fix f) }
ghci> :k Fix
Fix :: (* -> *) -> *
Fix is parameterised by a functor of kind * -> *, not a type of kind *.
Beyond * and ->
The DataKinds extension enriches GHC's kind system with user-declared kinds, so kinds may be built of pieces other than * and ->. It works by promoting all data declarations to the kind level. That is to say, a data declaration like
data Nat = Z | S Nat -- natural numbers
introduces a kind Nat and type constructors Z :: Nat and S :: Nat -> Nat, as well as the usual type and value constructors. This allows you to write datatypes parameterised by type-level data, such as the customary vector type, which is a linked list indexed by its length.
data Vec n a where
Nil :: Vec Z a
(:>) :: a -> Vec n a -> Vec (S n) a
ghci> :k Vec
Vec :: Nat -> * -> *
There's a related extension called ConstraintKinds, which frees constraints like Ord a from the yoke of the "fat arrow" =>, allowing them to roam across the landscape of the type system as nature intended. Kmett has used this power to build a category of constraints, with the newtype (:-) :: Constraint -> Constraint -> * denoting "entailment": a value of type c :- d is a proof that if c holds then d also holds. For example, we can prove that Ord a implies Eq [a] for all a:
ordToEqList :: Ord a :- Eq [a]
ordToEqList = Sub Dict
Life after forall
However, Haskell currently maintains a strict separation between the type level and the value level. Things at the type level are always erased before the program runs, (almost) always inferrable, invisible in expressions, and (dependently) quantified by forall. If your application requires something more flexible, such as dependent quantification over runtime data, then you have to manually simulate it using a singleton encoding.
For example, the specification of split says it chops a vector at a certain length according to its (runtime!) argument. The type of the output vector depends on the value of split's argument. We'd like to write this...
split :: (n :: Nat) -> Vec (n :+: m) a -> (Vec n a, Vec m a)
... where I'm using the type function (:+:) :: Nat -> Nat -> Nat, which stands for addition of type-level naturals, to ensure that the input vector is at least as long as n...
type family n :+: m where
Z :+: m = m
S n :+: m = S (n :+: m)
... but Haskell won't allow that declaration of split! There aren't any values of type Z or S n; only types of kind * contain values. We can't access n at runtime directly, but we can use a GADT which we can pattern-match on to learn what the type-level n is:
data Natty n where
Zy :: Natty Z
Sy :: Natty n -> Natty (S n)
ghci> :k Natty
Natty :: Nat -> *
Natty is called a singleton, because for a given (well-defined) n there is only one (well-defined) value of type Natty n. We can use Natty n as a run-time stand-in for n.
split :: Natty n -> Vec (n :+: m) a -> (Vec n a, Vec m a)
split Zy xs = (Nil, xs)
split (Sy n) (x :> xs) =
let (ys, zs) = split n xs
in (x :> ys, zs)
Anyway, the point is that values - runtime data - can't appear in types. It's pretty tedious to duplicate the definition of Nat in singleton form (and things get worse if you want the compiler to infer such values); dependently-typed languages like Agda, Idris, or a future Haskell escape the tyranny of strictly separating types from values and give us a range of expressive quantifiers. You're able to use an honest-to-goodness Nat as split's runtime argument and mention its value dependently in the return type.
#pigworker has written extensively about the unsuitability of Haskell's strict separation between types and values for modern dependently-typed programming. See, for example, the Hasochism paper, or his talk on the unexamined assumptions that have been drummed into us by four decades of Hindley-Milner-style programming.
Dependent Kinds
Finally, for what it's worth, with TypeInType modern GHC unifies types and kinds, allowing us to talk about kind variables using the same tools that we use to talk about type variables. In a previous post about session types I made use of TypeInType to define a kind for tagged type-level sequences of types:
infixr 5 :!, :?
data Session = Type :! Session -- Type is a synonym for *
| Type :? Session
| E
I'd recommend #Benjamin Hodgson's answer and the references he gives to see how to make this sort of thing useful. But, to answer your question more directly, using several extensions (DataKinds, KindSignatures, and GADTs), you can define types that are parameterized on (certain) concrete types.
For example, here's one parameterized on the concrete Bool datatype:
{-# LANGUAGE DataKinds, KindSignatures, GADTs #-}
{-# LANGUAGE FlexibleInstances #-}
module FlaggedType where
-- The single quotes below are optional. They serve to notify
-- GHC that we are using the type-level constructors lifted from
-- data constructors rather than types of the same name (and are
-- only necessary where there's some kind of ambiguity otherwise).
data Flagged :: Bool -> * -> * where
Truish :: a -> Flagged 'True a
Falsish :: a -> Flagged 'False a
-- separate instances, just as if they were different types
-- (which they are)
instance (Show a) => Show (Flagged 'False a) where
show (Falsish x) = show x
instance (Show a) => Show (Flagged 'True a) where
show (Truish x) = show x ++ "*"
-- these lists have types as indicated
x = [Truish 1, Truish 2, Truish 3] -- :: Flagged 'True Integer
y = [Falsish "a", Falsish "b", Falsish "c"] -- :: Flagged 'False String
-- this won't typecheck: it's just like [1,2,"abc"]
z = [Truish 1, Truish 2, Falsish 3] -- won't typecheck
Note that this isn't much different from defining two completely separate types:
data FlaggedTrue a = Truish a
data FlaggedFalse a = Falsish a
In fact, I'm hard pressed to think of any advantage Flagged has over defining two separate types, except if you have a bar bet with someone that you can write useful Haskell code without type classes. For example, you can write:
getInt :: Flagged a Int -> Int
getInt (Truish z) = z -- same polymorphic function...
getInt (Falsish z) = z -- ...defined on two separate types
Maybe someone else can think of some other advantages.
Anyway, I believe that parameterizing types with concrete values really only becomes useful when the concrete type is sufficient "rich" that you can use it to leverage the type checker, as in Benjamin's examples.
As #user2407038 noted, most interesting primitive types, like Ints, Chars, Strings and so on can't be used this way. Interestingly enough, though, you can use literal positive integers and strings as type parameters, but they are treated as Nats and Symbols (as defined in GHC.TypeLits) respectively.
So something like this is possible:
import GHC.TypeLits
data Tagged :: Symbol -> Nat -> * -> * where
One :: a -> Tagged "one" 1 a
Two :: a -> Tagged "two" 2 a
Three :: a -> Tagged "three" 3 a
Look at using Generalized Algebraic Data Types (GADTS), which enable you to define concrete outputs based on input type, e.g.
data CustomMaybe a where
MaybeChar :: Maybe a -> CustomMaybe Char
MaybeString :: Maybe a > CustomMaybe String
MaybeBool :: Maybe a -> CustomMaybe Bool
exampleFunction :: CustomMaybe a -> a
exampleFunction (MaybeChar maybe) = 'e'
exampleFunction (MaybeString maybe) = True //Compile error
main = do
print $ exampleFunction (MaybeChar $ Just 10)
To a similar effect, RankNTypes can allow the implementation of similar behaviour:
exampleFunctionOne :: a -> a
exampleFunctionOne el = el
type PolyType = forall a. a -> a
exampleFuntionTwo :: PolyType -> Int
exampleFunctionTwo func = func 20
exampleFunctionTwo func = func "Hello" --Compiler error, PolyType being forced to return 'Int'
main = do
print $ exampleFunctionTwo exampleFunctionOne
The PolyType definition allows you to insert the polymorphic function within exampleFunctionTwo and force its output to be 'Int'.
No. Haskell doesn't have dependent types (yet). See https://typesandkinds.wordpress.com/2016/07/24/dependent-types-in-haskell-progress-report/ for some discussion of when it may.
In the meantime, you can get behavior like this in Agda, Idris, and Cayenne.

Practical applications of Rank 2 polymorphism?

I'm covering polymorphism and I'm trying to see the practical uses of such a feature.
My basic understanding of Rank 2 is:
type MyType = ∀ a. a -> a
subFunction :: a -> a
subFunction el = el
mainFunction :: MyType -> Int
mainFunction func = func 3
I understand that this is allowing the user to use a polymorphic function (subFunction) inside mainFunction and strictly specify it's output (Int). This seems very similar to GADT's:
data Example a where
ExampleInt :: Int -> Example Int
ExampleBool :: Bool -> Example Bool
1) Given the above, is my understanding of Rank 2 polymorphism correct?
2) What are the general situations where Rank 2 polymorphism can be used, as opposed to GADT's, for example?
If you pass a polymorphic function as and argument to a Rank2-polymorphic function, you're essentially passing not just one function but a whole family of functions – for all possible types that fulfill the constraints.
Typically, those forall quantifiers come with a class constraint. For example, I might wish to do number arithmetic with two different types simultaneously (for comparing precision or whatever).
data FloatCompare = FloatCompare {
singlePrecision :: Float
, doublePrecision :: Double
}
Now I might want to modify those numbers through some maths operation. Something like
modifyFloat :: (Num -> Num) -> FloatCompare -> FloatCompare
But Num is not a type, only a type class. I could of course pass a function that would modify any particular number type, but I couldn't use that to modify both a Float and a Double value, at least not without some ugly (and possibly lossy) converting back and forth.
Solution: Rank-2 polymorphism!
modifyFloat :: (∀ n . Num n => n -> n) -> FloatCompare -> FloatCompare
mofidyFloat f (FloatCompare single double)
= FloatCompare (f single) (f double)
The best single example of how this is useful in practice are probably lenses. A lens is a “smart accessor function” to a field in some larger data structure. It allows you to access fields, update them, gather results... while at the same time composing in a very simple way. How it works: Rank2-polymorphism; every lens is polymorphic, with the different instantiations corresponding to the “getter” / “setter” aspects, respectively.
The go-to example of an application of rank-2 types is runST as Benjamin Hodgson mentioned in the comments. This is a rather good example and there are a variety of examples using the same trick. For example, branding to maintain abstract data type invariants across multiple types, avoiding confusion of differentials in ad, a region-based version of ST.
But I'd actually like to talk about how Haskell programmers are implicitly using rank-2 types all the time. Every type class whose methods have universally quantified types desugars to a dictionary with a field with a rank-2 type. In practice, this is virtually always a higher-kinded type class* like Functor or Monad. I'll use a simplified version of Alternative as an example. The class declaration is:
class Alternative f where
empty :: f a
(<|>) :: f a -> f a -> f a
The dictionary representing this class would be:
data AlternativeDict f = AlternativeDict {
empty :: forall a. f a,
(<|>) :: forall a. f a -> f a -> f a }
Sometimes such an encoding is nice as it allows one to use different "instances" for the same type, perhaps only locally. For example, Maybe has two obvious instances of Alternative depending on whether Just a <|> Just b is Just a or Just b. Languages without type classes, such as Scala, do indeed use this encoding.
To connect to leftaroundabout's reference to lenses, you can view the hierarchy there as a hierarchy of type classes and the lens combinators as simply tools for explicitly building the relevant type class dictionaries. Of course, the reason it isn't actually a hierarchy of type classes is that we usually will have multiple "instances" for the same type. E.g. _head and _head . _tail are both "instances" of Traversal' s a.
* A higher-kinded type class doesn't necessarily lead to this, and it can happen for a type class of kind *. For example:
-- Higher-kinded but doesn't require universal quantification.
class Sum c where
sum :: c Int -> Int
-- Not higher-kinded but does require universal quantification.
class Length l where
length :: [a] -> l
If you are using modules in Haskell, you are already using Rank-2 types. Theoretically speaking, modules are records with rank-2 type properties.
For example, the Foo module below in Haskell ...
module Foo(id) where
id :: forall a. a -> a
id x = x
import qualified Foo
main = do
putStrLn (Foo.id "hello")
return ()
... can actually be thought as a record as follows:
type FooType = FooType {
id :: forall a. a -> a
}
Foo :: FooType
Foo = Foo {
id = \x -> x
}
P/S (unrelated this question): from a language design perspective, if you are going to support module system, then you might as well support higher-rank types (i.e. allow arbitrary quantification of type variables on any level) to reduce duplication of efforts (i.e. type checking a module should be almost the same as type checking a record with higher rank types).

Haskell get type of algebraic parameter

I have a type
class IntegerAsType a where
value :: a -> Integer
data T5
instance IntegerAsType T5 where value _ = 5
newtype (IntegerAsType q) => Zq q = Zq Integer deriving (Eq)
newtype (Num a, IntegerAsType n) => PolyRing a n = PolyRing [a]
I'm trying to make a nice "show" for the PolyRing type. In particular, I want the "show" to print out the type 'a'. Is there a function that returns the type of an algebraic parameter (a 'show' for types)?
The other way I'm trying to do it is using pattern matching, but I'm running into problems with built-in types and the algebraic type.
I want a different result for each of Integer, Int and Zq q.
(toy example:)
test :: (Num a, IntegerAsType q) => a -> a
(Int x) = x+1
(Integer x) = x+2
(Zq x) = x+3
There are at least two different problems here.
1) Int and Integer are not data constructors for the 'Int' and 'Integer' types. Are there data constructors for these types/how do I pattern match with them?
2) Although not shown in my code, Zq IS an instance of Num. The problem I'm getting is:
Ambiguous constraint `IntegerAsType q'
At least one of the forall'd type variables mentioned by the constraint
must be reachable from the type after the '=>'
In the type signature for `test':
test :: (Num a, IntegerAsType q) => a -> a
I kind of see why it is complaining, but I don't know how to get around that.
Thanks
EDIT:
A better example of what I'm trying to do with the test function:
test :: (Num a) => a -> a
test (Integer x) = x+2
test (Int x) = x+1
test (Zq x) = x
Even if we ignore the fact that I can't construct Integers and Ints this way (still want to know how!) this 'test' doesn't compile because:
Could not deduce (a ~ Zq t0) from the context (Num a)
My next try at this function was with the type signature:
test :: (Num a, IntegerAsType q) => a -> a
which leads to the new error
Ambiguous constraint `IntegerAsType q'
At least one of the forall'd type variables mentioned by the constraint
must be reachable from the type after the '=>'
I hope that makes my question a little clearer....
I'm not sure what you're driving at with that test function, but you can do something like this if you like:
{-# LANGUAGE ScopedTypeVariables #-}
class NamedType a where
name :: a -> String
instance NamedType Int where
name _ = "Int"
instance NamedType Integer where
name _ = "Integer"
instance NamedType q => NamedType (Zq q) where
name _ = "Zq (" ++ name (undefined :: q) ++ ")"
I would not be doing my Stack Overflow duty if I did not follow up this answer with a warning: what you are asking for is very, very strange. You are probably doing something in a very unidiomatic way, and will be fighting the language the whole way. I strongly recommend that your next question be a much broader design question, so that we can help guide you to a more idiomatic solution.
Edit
There is another half to your question, namely, how to write a test function that "pattern matches" on the input to check whether it's an Int, an Integer, a Zq type, etc. You provide this suggestive code snippet:
test :: (Num a) => a -> a
test (Integer x) = x+2
test (Int x) = x+1
test (Zq x) = x
There are a couple of things to clear up here.
Haskell has three levels of objects: the value level, the type level, and the kind level. Some examples of things at the value level include "Hello, world!", 42, the function \a -> a, or fix (\xs -> 0:1:zipWith (+) xs (tail xs)). Some examples of things at the type level include Bool, Int, Maybe, Maybe Int, and Monad m => m (). Some examples of things at the kind level include * and (* -> *) -> *.
The levels are in order; value level objects are classified by type level objects, and type level objects are classified by kind level objects. We write the classification relationship using ::, so for example, 32 :: Int or "Hello, world!" :: [Char]. (The kind level isn't too interesting for this discussion, but * classifies types, and arrow kinds classify type constructors. For example, Int :: * and [Int] :: *, but [] :: * -> *.)
Now, one of the most basic properties of Haskell is that each level is completely isolated. You will never see a string like "Hello, world!" in a type; similarly, value-level objects don't pass around or operate on types. Moreover, there are separate namespaces for values and types. Take the example of Maybe:
data Maybe a = Nothing | Just a
This declaration creates a new name Maybe :: * -> * at the type level, and two new names Nothing :: Maybe a and Just :: a -> Maybe a at the value level. One common pattern is to use the same name for a type constructor and for its value constructor, if there's only one; for example, you might see
newtype Wrapped a = Wrapped a
which declares a new name Wrapped :: * -> * at the type level, and simultaneously declares a distinct name Wrapped :: a -> Wrapped a at the value level. Some particularly common (and confusing examples) include (), which is both a value-level object (of type ()) and a type-level object (of kind *), and [], which is both a value-level object (of type [a]) and a type-level object (of kind * -> *). Note that the fact that the value-level and type-level objects happen to be spelled the same in your source is just a coincidence! If you wanted to confuse your readers, you could perfectly well write
newtype Huey a = Louie a
newtype Louie a = Dewey a
newtype Dewey a = Huey a
where none of these three declarations are related to each other at all!
Now, we can finally tackle what goes wrong with test above: Integer and Int are not value constructors, so they can't be used in patterns. Remember -- the value level and type level are isolated, so you can't put type names in value definitions! By now, you might wish you had written test' instead:
test' :: Num a => a -> a
test' (x :: Integer) = x + 2
test' (x :: Int) = x + 1
test' (Zq x :: Zq a) = x
...but alas, it doesn't quite work like that. Value-level things aren't allowed to depend on type-level things. What you can do is to write separate functions at each of the Int, Integer, and Zq a types:
testInteger :: Integer -> Integer
testInteger x = x + 2
testInt :: Int -> Int
testInt x = x + 1
testZq :: Num a => Zq a -> Zq a
testZq (Zq x) = Zq x
Then we can call the appropriate one of these functions when we want to do a test. Since we're in a statically-typed language, exactly one of these functions is going to be applicable to any particular variable.
Now, it's a bit onerous to remember to call the right function, so Haskell offers a slight convenience: you can let the compiler choose one of these functions for you at compile time. This mechanism is the big idea behind classes. It looks like this:
class Testable a where test :: a -> a
instance Testable Integer where test = testInteger
instance Testable Int where test = testInt
instance Num a => Testable (Zq a) where test = testZq
Now, it looks like there's a single function called test which can handle any of Int, Integer, or numeric Zq's -- but in fact there are three functions, and the compiler is transparently choosing one for you. And that's an important insight. The type of test:
test :: Testable a => a -> a
...looks at first blush like it is a function that takes a value that could be any Testable type. But in fact, it's a function that can be specialized to any Testable type -- and then only takes values of that type! This difference explains yet another reason the original test function didn't work. You can't have multiple patterns with variables at different types, because the function only ever works on a single type at a time.
The ideas behind the classes NamedType and Testable above can be generalized a bit; if you do, you get the Typeable class suggested by hammar above.
I think now I've rambled more than enough, and likely confused more things than I've clarified, but leave me a comment saying which parts were unclear, and I'll do my best.
Is there a function that returns the type of an algebraic parameter (a 'show' for types)?
I think Data.Typeable may be what you're looking for.
Prelude> :m + Data.Typeable
Prelude Data.Typeable> typeOf (1 :: Int)
Int
Prelude Data.Typeable> typeOf (1 :: Integer)
Integer
Note that this will not work on any type, just those which have a Typeable instance.
Using the extension DeriveDataTypeable, you can have the compiler automatically derive these for your own types:
{-# LANGUAGE DeriveDataTypeable #-}
import Data.Typeable
data Foo = Bar
deriving Typeable
*Main> typeOf Bar
Main.Foo
I didn't quite get what you're trying to do in the second half of your question, but hopefully this should be of some help.

Resources