Simple haskell splitlist - haskell

I have the following function which takes a list and returns two sublists split at a given element n. However, I only need to split it in half, with odd length lists having a larger first sublist
splitlist :: [a] -> Int -> ([a],[a])
splitlist [] = ([],[])
splitlist l#(x : xs) n | n > 0 = (x : ys, zs)
| otherwise = (l, [])
where (ys,zs) = splitlist xs (n - 1)
I know I need to change the signature to [a] -> ([a],[a]), but where in the code should I put something like length(xs) so that I don't break recursion?

In a real program you should probably use
splitlist :: [a] -> ([a], [a])
splitlist xs = splitAt ((length xs + 1) `div` 2) xs
(i.e. something along the lines of dreamcrash's answer.)
But if, for learning purposes, you're looking for an explicitly recursive solution, study this:
splitlist :: [a] -> ([a], [a])
splitlist xs = f xs xs where
f (y : ys) (_ : _ : zs) =
let (as, bs) = f ys zs
in (y : as, bs)
f (y : ys) (_ : []) = (y : [], ys)
f ys [] = ([], ys)

You can do it using take and drop:
splitlist :: [a] -> ([a],[a])
splitlist [] = ([],[])
splitlist l = let half = (length(l) +1)`div` 2
in (take half l, drop half l)
or you can take advantage of the function splitAt:
splitlist list = splitAt ((length (list) + 1) `div` 2) list

You can do this by using the take and drop built-in functions. But if you want something that can be done with all self written functions try this:
dropList :: Int -> [Int] -> [Int]
dropList 0 [] = []
dropList 0 (x:xs) = x:xs
dropList y [] = []
dropList y (x:xs) = dropList (y-1) xs
takeList :: Int -> [Int] -> [Int]
takeList 0 [] = []
takeList 0 (x:xs) = []
takeList y [] = []
takeList y (x:xs)
| y <= length (x:xs) = x : takeList (y-1) xs
| otherwise = []
split :: Int -> [Int] -> ([Int],[Int])
split 0 [] = ([],[])
split y [] = ([],[])
split y (x:xs) = (takeList y (x:xs), dropList y (x:xs))
main = do
print (split 4 [1,2,3,4,5,6])

Related

Is there a way to use "<=" for pattern matching in Haskell?

I have the following code, that drops every nth element in a list.
dropEvery :: [a] -> Int -> [a]
dropEvery xs n = f xs n ++ dropEvery (drop n xs) n
where
f ys 0 = []
f ys 1 = []
f [] m = []
f (y:ys) n = y : (f ys (n-1))
I would like to make it a bit shorter and was wondering if there is a way to use "<=" in pattern matching. I tried doing this using a where clause, which did not work, why?
f ys m = []
where
m <= 1 || ys == []
How can I shirk this redundancy? Is there a nice way to use "less or equal" in pattern matching?
EDIT: I tried this using guards
where
f ys m
| m <= 1 || null ys = []
| otherwise = (head ys) : (f (tail ys) (n-1))
You can work with a guard:
dropEvery :: [a] -> Int -> [a]
dropEvery xs n = f xs n ++ dropEvery (drop n xs) n
where
f ys i | i <= 1 = []
f [] _ = []
f (y:ys) n = y : (f ys (n-1))
If the condition in the guard is satisfied, then that clause "fires" and thus in this case will return an empty list [].
You will however get stuck in an infinite loop, since you write f xs n ++ dropEvery (n xs) n but drop 3 [] will return [], and thus it will keep calling dropEvery with an empty list.
You can make use of recursion where we each time decrement n until it reaches 0, and then we make two hops, so:
dropEvery :: Int -> [a] -> [a]
dropEvery n = go (n-1)
where go _ [] = []
go i (x:xs)
| i <= 0 = go (n-1) xs
| otherwise = x : go (i-1) xs
We can also work with splitAt :: [a] -> ([a], [a]) and with a pattern guard:
dropEvery n [] = []
dropEvery n ds
| (_:ys) <- sb = sa ++ dropEvery n ys
| otherwise = sa
where (sa, sb) = splitAt (n-1) ds

Haskell - Non-exhaustive pattern for a reason I don't understand

So I'm trying to write a function that, given two lists of integers, adds the ith even number of each list and returns them in another list. In case one of the list doesn't have an ith even number, a 0 is considered. For example, if the lists are [1,2,1,4,6] and [2,2], it returns [4,6,6] ([2+2,4+2,6+0]). I have the following code:
addEven :: [Int] -> [Int] -> [Int]
addEeven [] [] = []
addEeven (x:xs) [] = filter (\g -> g `mod`2 == 0) (x:xs)
addEven [] (y:ys) = filter (\g -> g `mod` 2 == 0) (y:ys)
addEven (x:xs) (y:ys) = (a + b):(addEven as bs)
where
(a:as) = filter (\g -> g `mod` 2 == 0) (x:xs)
(b:bs) = filter (\g -> g `mod` 2 == 0) (y:ys)
When I run that with the previous example, I get:
[4,6*** Exception: ex.hs:(4,1)-(8,101): Non-exhaustive patterns in function addEven
I really can't see what I'm missing, since it doesn't work with any input I throw at it.
A filter might eliminate elements, hence filter (\g -> gmod2 == 0) is not said to return any elements, and thus the patterns (a:as) and (b:bs) might fail.
That being said, I think you make the problem too complex here. You can first define a helper function that adds two elements of a list:
addList :: Num a => [a] -> [a] -> [a]
addList (x:xs) (y:ys) = (x+y) : addList xs ys
addList xs [] = xs
addList [] ys = ys
Then we do the filter on the two parameters, and make a function addEven that looks like:
addEven :: Integral a => [a] -> [a] -> [a]
addEven xs ys = addList (filter even xs) (filter even ys)
or with on :: (b -> b -> c) -> (a -> b) -> a -> a -> c:
import Data.Function(on)
addEven :: Integral a => [a] -> [a] -> [a]
addEven = addList `on` filter even
While using filter is very instinctive in this case, perhaps using filter twice and then summing up the results might be slightly ineffficient for large lists. Why don't we do the job all at once for a change..?
addMatches :: [Int] -> [Int] -> [Int]
addMatches [] [] = []
addMatches [] ys = filter even ys
addMatches xs [] = filter even xs
addMatches xs ys = first [] xs ys
where
first :: [Int] -> [Int] -> [Int] -> [Int]
first rs [] ys = rs ++ filter even ys
first rs (x:xs) ys = rs ++ if even x then second [x] xs ys
else first [] xs ys
second :: [Int] -> [Int] -> [Int] -> [Int]
second [r] xs [] = [r] ++ filter even xs
second [r] xs (y:ys) = if even y then first [r+y] xs ys
else second [r] xs ys
λ> addMatches [1,2,1,4,6] [2,2]
[4,6,6]

Haskell - Weave two lists together in chunks of n size?

I am practicing some Haskell exam paper questions, and have come across the following
Define a Haskell function weaveHunks which takes an int and
two lists and weaves them together in hunks of the given size.
Be sure to declare its type signature.
Example:
weaveHunks 3 "abcdefghijklmno" "ABCDEFGHIJKLMNO"
=> "abcABCdefDEFghiGHIjklJKLmnoMNO"
I have found the following on Stack Overflow, which is just too weave two lists together but only in chunks of 1
weaveHunks :: [a] -> [a] -> [a]
weaveHunks xs [] = xs
weaveHunks [] ys = ys
weaveHunks (x:xs) (y:ys) = x : y : weaveHunks xs ys
I am having problems adjusting this to take chunks fo n size, I am very new to Haskell but this is what I have so far
weaveHunks :: Int -> [a] -> [a] -> [a]
weaveHunks n xs [] = xs
weaveHunks n [] ys = ys
weaveHunks n xs ys = (take n xs) : (take n ys) : weaveHunks n (drop n xs) (drop n ys)
I am getting an error on the last line
(Couldn't match type a' with[a]')
Is (drop n xs) not a list?
You're very close!
By using the : operator to prepend the hunks, you're expressing that take n xs is one element of the result list, take n ys the next, and so on. But actually in both cases it's multiple elements you're prepending. That's the [a] that should actually be just a.
The solution is to use the ++ operator instead, which prepends an entire list rather than just a single element.
This is the full solution as I'd write it:
weaveHunks :: Int -> [a] -> [a] -> [a]
weaveHunks _ xs [] = xs
weaveHunks _ [] ys = ys
weaveHunks n xs ys = xHunk ++ yHunk ++ weaveHunks n xRemain yRemain
where [(xHunk, xRemain), (yHunk, yRemain)] = splitAt n <$> [xs,ys]
As #leftaroundabout said, since your appending lists of type [a], you need to use ++ instead of :. With this in mind, your code would then look like this:
weaveHunks :: Int -> [a] -> [a] -> [a]
weaveHunks _ xs [] = xs
weaveHunks _ [] ys = ys
weaveHunks n xs ys = (take n xs) ++ (take n ys) ++ weaveHunks n (drop n xs) (drop n ys)
If your interested, you can also use library functions to do this task:
import Data.List.Split
weaveHunks :: Int -> [a] -> [a] -> [a]
weaveHunks n xs ys = concat $ zipWith (++) (chunksOf n xs) (chunksOf n ys)
Note: chunksOf is from Data.List.Split, which splits the list into sublists of length n, so the type of this function is Int -> [a] -> [[a]]. zipWith zips two lists based on a condition, in this case concatenation ++. concat turns a list of [[a]] into [a].

How to extract the same elements from two lists in Haskell?

here's my question:
How to extract the same elements from two equal length lists to another list?
For example: given two lists [2,4,6,3,2,1,3,5] and [7,3,3,2,8,8,9,1] the answer should be [1,2,3,3]. Note that the order is immaterial. I'm actually using the length of the return list.
I tried this:
sameElem as bs = length (nub (intersect as bs))
but the problem is nub removes all the duplications. The result of using my function to the former example is 3 the length of [1,3,2] instead of 4 the length of [1,3,3,2]. Is there a solution? Thank you.
Since the position seems to be irrelevant, you can simply sort the lists beforehand and then traverse both lists:
import Data.List (sort)
intersectSorted :: Ord a => [a] -> [a] -> [a]
intersectSorted (x:xs) (y:ys)
| x == y = x : intersectSorted xs ys
| x < y = intersectSorted xs (y:ys)
| x > y = intersectSorted (x:xs) ys
intersectSorted _ _ = []
intersect :: Ord a => [a] -> [a] -> [a]
intersect xs ys = intersectSorted (sort xs) (sort ys)
Note that it's also possible to achieve this with a Map:
import Data.Map.Strict (fromListWith, assocs, intersectionWith, Map)
type Counter a = Map a Int
toCounter :: Ord a => [a] -> Counter a
toCounter = fromListWith (+) . flip zip (repeat 1)
intersectCounter :: Ord a => Counter a -> Counter a -> Counter a
intersectCounter = intersectionWith min
toList :: Counter a -> [a]
toList = concatMap (\(k,c) -> replicate c k) . assocs
intersect :: Ord a => [a] -> [a] -> [a]
intersect xs ys = toList $ intersectCounter (toCounter xs) (toCounter ys)
You could write a function for this. There is probably a more elegant version of this involving lambda's or folds, but this does work for your example:
import Data.List
same (x:xs) ys = if x `elem` ys
then x:same xs (delete x ys)
else same xs ys
same [] _ = []
same _ [] = []
The delete x ys in the then-clause is important, without that delete command items from the first list that occur at least once will be counted every time they're encountered.
Note that the output is not sorted, since you were only interested in the length of the resulting list.
import Data.List (delete)
mutuals :: Eq a => [a] -> [a] -> [a]
mutuals [] _ = []
mutuals (x : xs) ys | x `elem` ys = x : mutuals xs (delete x ys)
| otherwise = mutuals xs ys
gives
mutuals [2,4,6,3,2,1,3,5] [7,3,3,2,8,8,9,1] == [2,3,1,3]

Haskell : Comparing if two binary trees have the same elements

So I am working on a function that detects if two binary trees have the same numbers in them.
So what I've come up with is the following which works just fine but the problem is that I am using total of 5 functions. Is there another way of detecting if two BT's have the same elements with just one function ? Here is my solution so far which seems to work just fine.
flatten :: BinTree a -> [a]
flatten Empty = []
flatten (Node l x r) = flatten l ++ [x] ++ flatten r
splt :: Int -> [a] -> ([a], [a])
splt 0 xs = ([], xs)
splt _ [] = ([],[])
splt n (x:xs) = (\ys-> (x:fst ys, snd ys)) (splt (n-1) xs)
merge :: Ord a => [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) = if (x > y) then y:merge (x:xs) ys else x:merge xs(y:ys)
msort :: Ord a => [a] -> [a]
msort [] =[]
msort (x:[]) = (x:[])
msort xs = (\y -> merge (msort (fst y)) (msort (snd y))) (splt (length xs `div` 2) xs)
areTreesEqual :: (Ord a) => BinTree a -> BinTree a-> Bool
areTreesEqual Empty Empty = True
areTreesEqual Empty a = False
areTreesEqual a Empty = False
areTreesEqual a b = msort (flatten (a) ) == msort (flatten (b))
How about
import Data.MultiSet as Set
equal a b = accum a == accum b
where accum Empty = Set.empty
accum (Node l x r) = Set.insert x (accum l `Set.union` accum r)
Sets are lovely for unordered comparison and multisets will make sure that
1 /= 1
1 1
Eg, that duplicate numbers are counted properly. If this isn't a big concern, than swap MultiSet for Set. I think 3 lines is pretty decent for this sort of thing.

Resources