If tessellation gives a bonus over just using high-poly models,then why do modern 2012 games still use gigantic models that take a lot of hard disk space instead of tessellating it all and just adjusting the tessellation factor to depend on distance from camera,creating a nice level of detail.
You can't get back detail by tessellation that was not there in the first place. It just means those models would be even bigger without it being available.
In its most basic form, tessellation is a method of breaking down polygons into finer pieces. For example, if you take a square and cut it across its diagonal, you’ve “tessellated” this square into two triangles. By itself, tessellation does little to improve realism. For example, in a game, it doesn’t really matter if a square is rendered as two triangles or two thousand triangles—tessellation only improves realism if the new triangles are put to use in depicting new information.
When a displacement map (left) is applied to a flat surface, the
resulting surface (right) expresses the height information encoded in
the displacement map. The simplest and most popular way of putting the
new triangles to use is a technique called displacement mapping. A
displacement map is a texture that stores height information. When
applied to a surface, it allows vertices on the surface to be shifted
up or down based on the height information. For example, the graphics
artist can take a slab of marble and shift the vertices to form a
carving. Another popular technique is to apply displacement maps over
terrain to carve out craters, canyons, and peaks
http://www.nvidia.com/object/tessellation.html
I think the reason why nobody uses hardware tessellation in games is, that ca. 60% of all game player are console player and aslong the console doesnt support shadermodel5, there is no reason to do games that uses hardware tessellation. Even if they do, they may be have to do a game in dx9 and dx11 because it is not really good downward compatible... but maybe there is an other reason to!
With the new consoles comming out this year, maybe HW Tessellation gets an other change ;)
Related
This is a question to understand the principles of GPU accelerated rendering of 2d vector graphics.
With Skia or Direct2D, you can draw e.g. rounded rectangles, Bezier curves, polygons, and also have some effects like blur.
Skia / Direct2D offer CPU and GPU based rendering.
For the CPU rendering, I can imagine more or less how e.g. a rounded rectangle is rendered. I have already seen a lot of different line rendering algorithms.
But for GPU, I don't have much of a clue.
Are rounded rectangles composed of triangles?
Are rounded rectangles drawn entirely by wild pixel shaders?
Are there some basic examples which could show me the basic prinicples of how such things work?
(Probably, the solution could also be found in the source code of Skia, but I fear that it would be so complex / generic that a noob like me would not understand anything.)
In case of direct2d, there is no source code, but since it uses d3d10/11 under the hood, it's easy enough to see what it does behind the scenes with Renderdoc.
Basically d2d tends to have a policy to minimize draw calls by trying to fit any geometry type into a single buffer, versus skia which has some dedicated shader sets depending on the shape type.
So for example, if you draw a bezier path, Skia will try to use tesselation shader if possible (which will need a new draw call if the previous element you were rendering was a rectangle), since you change pipeline state.
D2D, on the other side, tends to tesselate on the cpu, and push to some vertexbuffer, and switches draw call only if you change brush type (if you change from one solid color brush to another it can keep the same shaders, so it doesn't switch), or when the buffer is full, or if you switch from shape to text (since it then needs to send texture atlases).
Please note that when tessellating bezier path D2D does a very great work at making the resulting geometry non self intersecting (so alpha blending works properly even on some complex self intersecting path).
In case on rounded rectangle, it does the same, just tessellates into triangles.
This allows it to minimize draw calls to a good extent, as well as allowing anti alias on a non msaa surface (this is done at mesh level, with some small triangles with alpha). The downside of it is that it doesn't use much hardware feature, and geometry emitted can be quite high, even for seemingly simple shapes).
Since d2d prefers to use triangle strips instead or triangle list, it can do some really funny things when drawing a simple list of triangles.
For text, d2d use instancing and draws one instanced quad per character, it is also good at batching those, so if you call some draw text functions several times in a row, it will try to merge this into a single call as well.
I am looking for an algorithm that given two meshes could clip one using another.
The simplest form of this is clipping a mesh using a plane. I've already implemented that by following something similar to what is described here.
What it does is basically inspecting all mesh vertices and triangles with respect to the plane (the plane's normal and point are given). If the triangle is completely above the plane, it is left untouched. If it falls completely below the plane, it is discarded. If some of the edges of the triangle intersect with the plane, the intersecting points with the plane are calculated and added as the new vertices. Finally a cap is generated for the hole on the place the mesh was cut.
The problem is that the algorithm assumes that the plane is unlimited, therefore whatever is in its path is clipped. In the simplest form, I need an extension of this without the assumption of a plane of "infinite" size.
To clarify, imagine that we have a 3D model of a desk with 2 boxes on it. The boxes are adjacent (but not touching or stacked). The user will define a cutting plane of a limited width and height underneath the first box and performs the cut. We end up with a desk model (mesh) with a box on it and another box (mesh) that can be freely moved around/manipulated.
In the general form, I'd like the user to be able to define a bounding box for the box he/she wants to separate from the desk model and perform the cut using that bounding box.
If I could extend the algorithm I already have to an algorithm with limited-sized planes, that would be great for now.
What you're looking for are constructive solid geometry/boolean algorithms with arbitrary meshes. It's considerably more complex than slicing meshes by an infinite plane.
Among the earliest and simplest research in this area, and a good starting point, is Constructive Solid Geometry for Polyhedral Objects by Trumbore and Hughes.
http://cs.brown.edu/~jfh/papers/Laidlaw-CSG-1986/main.htm
From the original paper:
More elaborate solutions extend upon this subject with a variety of data structures.
The real complexity of the operation lies in the slicing algorithm to slice one triangle against another. The nightmare of implementing robust CSG lies in numerical precision. It's easy when you involve objects far more complex than a cube to run into cases where a slice is made just barely next to a vertex (at which point you have the tough decision of merging the new split vertex or not prior to carrying out more splits), where polygons are coplanar (or almost), etc.
So I suggest initially erring on the side of using very high-precision floating point numbers, possibly even higher than double precision to focus on getting something working correctly and robustly. You can optimize later (first pass should be to use an accelerator like an octree/kd-tree/bvh), but you'll avoid many headaches this way in your first iteration.
This is vastly simpler to implement at render time if you're focusing on a raytracer rather than a modeling software, e.g. With raytracers, all you have to do to do this kind of arbitrary clipping is pretend that an object used to subtract from another has its polygons flipped in the culling process, e.g. It's easy to solve robustly at the ray level, but quite a bit harder to do robustly at the geometric level.
Another thing you can do to make your life so much easier if you can afford it is to voxelize your object, find subtractions/additions/unions of voxels, and then translate the voxels back into a mesh. This is so much easier to make robust, but harder to do efficiently and the voxel->polygon conversion can get quite involved if you want better results than what marching cubes provide.
It's a really tough area to do extremely well and requires perseverance, and thus the reason for the existence of things like this: http://carve-csg.com/about.
If someone is interested, currently there is a solution for this problem in CGAL library. It allows clipping one triangular mesh using another mesh as bounding volume. The usage example can be found here.
I am using Java to write a very primitive 3D graphics engine based on The Black Art of 3D Game Programming from 1995. I have gotten to the point where I can draw single color polygons to the screen and move the camera around the "scene". I even have a Z buffer that handles translucent objects properly by sorting those pixels by Z, as long as I don't show too many translucent pixels at once. I am at the point where I want to add lighting. I want to keep it simple, and ambient light seems simple enough, directional light should be fairly simple too. But I really want point lighting with the ability to move the light source around and cast very primitive shadows ( mostly I don't want light shining through walls ).
My problem is that I don't know the best way to approach this. I imagine a point light source casting rays at regular angles, and if these rays intersect a polygon it will light that polygon and stop moving forward. However when I think about a scene with multiple light sources and multiple polygons with all those rays I imagine it will get very slow. I also don't know how to handle a case where a polygon is far enough away from a light source that if falls in between two rays. I would give each light source a maximum distance, and if I gave it enough rays, then there should be no point within that distance that any two rays are too far apart to miss a polygon, but that only increases my problem with the number of calculations to perform.
My question to you is: Is there some trick to point light sources to speed them up or just to organize it better? I'm afraid I'll just get a nightmare of nested for loops. I can't use openGL or Direct3D or any other cheats because I want to write my own.
If you want to see my results so far, here is a youtube video. I have already fixed the bad camera rotation. http://www.youtube.com/watch?v=_XYj113Le58&feature=plcp
Lighting for real time 3d applications is (or rather - has in the past generally been) done by very simple approximations - see http://en.wikipedia.org/wiki/Shading. Shadows are expensive - and have generally in rasterizing 3d engines been accomplished via shadow maps & Shadow Volumes. Point lights make shadows even more expensive.
Dynamic real time light sources have only recently become a common feature in games - simply because they place such a heavy burden on the rendering system. And these games leverage dedicated graphics cards. So I think you may struggle to get good performance out of your engine if you decide to include dynamic - shadow casting - point lights.
Today it is commonplace for lighting to be applied in two ways:
Traditionally this has been "forward rendering". In this method, for every vertex (if you are doing the lighting per vertex) or fragment (if you are doing it per-pixel) you would calculate the contribution of each light source.
More recently, "deferred" lighting has become popular, wherein the geometry and extra data like normals & colour info are all rendered to intermediate buffers - which is then used to calculate lighting contributions. This way, the lighting calculations are not dependent on the geometry count. It does however, have a lot of other overhead.
There are a lot of options. Implementing anything much more complex than some the basic models that have been used by dedicated graphics cards over the past couple of years is going to be challenging, however!
My suggestion would be to start out with something simple - basic lighting without shadows. From there you can extend and optimize.
What are you doing the ray-triangle intersection test for? Are you trying to light only triangles which the light would reach? Ray-triangle
intersections for every light with every poly is going to be very expensive I think. For lighting without shadows, typically you would
just iterate through every face (or if you are doing it per vertex, through every vertex) and calculate & add the lighting contribution per light - you would do this just before you start rasterizing as you have to pass through all polys in anycase.
You can calculate the lighting by making use of any illumination model, something very simple like Lambertian reflectance - which shades the surface based upon the dot product of the normal of the surface and the direction vector from the surface to the light. Make sure your vectors are in the same spaces! This is possibly why you are getting the strange results that you are. If your surface normal is in world space, be sure to calculate the world space light vector. There are a bunch of advantages for calulating lighting in certain spaces, you can have a look at that later on, for now I suggest you just get the basics up and running. Also have a look at Blinn-phong - this is the shading model graphics cards used for many years.
For lighting with shadows - look into the links I posted. They were developed because realistic lighting is so expensive to calculate.
By the way, LaMothe had a follow up book called Tricks of the 3D Game Programming Gurus-Advanced 3D Graphics and Rasterization.
This takes you through every step of programming a 3d engine. I am not sure what the black art book covers.
From the oldest games to the very modern, it seems like you can still see through walls or most often the ground in some camera positions.
Why is collision difficult to effectively compute in graphics engines?
Is it rounding/loss of precision accumulating leading to a mis-rendered view?
This is not actually collision in the explicit sense. The camera position is probably not actually "inside" the wall or the ground in those situations, but it is simply very close to it.
In computer 3D graphics the camera has a concept of a near plane and a far plane. Only geometry located between these two planes will be visible, while the rest will be clipped. If you are too close to something and align the camera correctly, then chances are that some parts of the geometry will be too close to the camera as defined by the near plane and as a result that geometry will not be rendered.
Now, the distance to this near plane can be set by the developers, and it can be set to be very short - short enough to ensure that situations like these cannot occur. However, the depth buffer or z buffer that is used to determine which objects are closest to the camera during rendering, and thus which objects to render and which not to render, is closely related to the near and far plane distances.
In graphics hardware the depth buffer is represented using a fixed amount of bits for each pixel, for example 32 bits. These 32 bits must be enough to accurately represent the entire span between the near plane and the far plane. It is also not linear, but will use more precision closer to the camera. As a result, choosing a very small near plane distance will greatly reduce the overall precision of the depth buffer. This can cause annoying flickering throughout the entire scene wherever two objects are very close to each others.
You can read more about this issue here as well as section 12.040 here.
It's not about difficulty (of course, it's not easy to compute collision/clipping of non-convex object), but you still have only like ~33ms to compute whole frame, so some compromise have to be made (collision mesh is not the same like mesh you really see). If there is no time for precise solution (to fulfill all conditions - camera distance, object which have to be seen, collision avoidance), you have to fallback to some "easy" solution like see through the wall.
An old Direct3D book says
"...you can achieve an acceptable frame
rate with hardware acceleration while
displaying between 2000 and 4000
polygons per frame..."
What is one polygon in Direct3D? Do they mean one primitive (indexed or otherwise) or one triangle?
That book means triangles. Otherwise, what if I wanted 1000-sided polygons? Could I still achieve 2000-4000 such shapes per frame?
In practice, the only thing you'll want it to be is a triangle because if a polygon is not a triangle it's generally tessellated to be one anyway. (Eg, a quad consists of two triangles, et cetera). A basic triangulation (tessellation) algorithm for that is really simple; you just loop though the vertices and turn every three vertices into a triangle.
Here, a "polygon" refers to a triangle. All . However, as you point out, there are many more variables than just the number of triangles which determine performance.
Key issues that matter are:
The format of storage (indexed or not; list, fan, or strip)
The location of storage (host-memory vertex arrays, host-memory vertex buffers, or GPU-memory vertex buffers)
The mode of rendering (is the draw primitive command issued fully from the host, or via instancing)
Triangle size
Together, those variables can create much greater than a 2x variation in performance.
Similarly, the hardware on which the application is running may vary 10x or more in performance in the real world: a GPU (or integrated graphics processor) that was low-end in 2005 will perform 10-100x slower in any meaningful metric than a current top-of-the-line GPU.
All told, any recommendation that you use 2-4000 triangles is so ridiculously outdated that it should be entirely ignored today. Even low-end hardware today can easily push 100,000 triangles in a frame under reasonable conditions. Further, most visually interesting applications today are dominated by pixel shading performance, not triangle count.
General rules of thumb for achieving good triangle throughput today:
Use [indexed] triangle (or quad) lists
Store data in GPU-memory vertex buffers
Draw large batches with each draw primitives call (thousands of primitives)
Use triangles mostly >= 16 pixels on screen
Don't use the Geometry Shader (especially for geometry amplification)
Do all of those things, and any machine today should be able to render tens or hundreds of thousands of triangles with ease.
According to this page, a polygon is n-sided in Direct3d.
In C#:
public static Mesh Polygon(
Device device,
float length,
int sides
)
As others already said, polygons here means triangles.
Main advantage of triangles is that, since 3 points define a plane, triangles are coplanar by definition. This means that every point within the triangle is exactly defined as a linear combination of polygon points. More vertices aren't necessarily coplanar, and they don't define a unique curved plane.
An advantage more in mechanical modeling than in graphics is that triangles are also undeformable.