Convert Negative-base binary to Decimal in Haskell: "Instances of .. required" - haskell

I have to write two functions converting decimal numers into a (-2)adian number system (similar to binary only with -2) and vice versa.
I already have managed to get the decimal -> (-2)adian running.
But with (-2)adian -> decimal I have a problem and just don't know where to begin.
Hope you can Help me
type NegaBinary = String
-- Function (-2)adisch --> decimal
negbin_dezi :: NegaBinary -> Integer -> Integer
negbin_dezi (xs:x) n
| (x == 0) = if ([xs] == "") then 0 else (negbin_dezi [xs] (n+1))
| (x == 1) = if ([xs] == "") then (-2)**n else (-2)**n + (negbin_dezi [xs] (n+1))
It always throws:
"Instances of (Num [Char], Floating Integer) required for definition of negbin_dezi.
Anyone an idea why it wont work?
Please please please :)

You have your list pattern-matching syntax backwards. In _ : _ the first argument is the head of the list (one element), and the second is the tail of the list (another list). e.g. x:xs matched with "abc" gives x = 'a' xs = "bc". So xs:x should be x:xs. The reason for GHC asking for an instance of Num [Char], is the comparison x == 0 (and x == 1). In this, it is trying to match the type of x (String == [Char]) with the type of 0 (Num a => a), and to do this, it requires a Num instance for String.
The fix is: negbin_dezi (x:xs) n
The problem asking for an Floating Integer instance is because (**) has type Floating a => a -> a -> a, where as you want (^) which has type (Num a, Integral b) => a -> b -> a (i.e. it is restricted to integer powers.)
Once you've done this, you'll find that your algorithm doesn't work for a few reasons:
The number 0 is different to the character '0', you should be comparing x with the characters '0' and '1' rather than the numbers 0 and 1.
xs is already a string, so [xs] is a list containing a string, which isn't what you want. This is fixed by removing the square brackets.
Possibly the ordering of the reduction is wrong.
On a different note, the duplicated if statement suggests that there is some optimisations that could happen with your code. Specifically, if you handle the empty string as part of negbin_dezi then you won't have to special case it. You could write it something like
negbin_dezi "" _ = 0
negbin_dezi (x:xs) n
| n == '0' = negbin_dezi xs (n+1)
| n == '1' = (-2)^n + negbin_dezi
(This has the bonus of meaning that the function is "more total", i.e. it is defined on more inputs.)
A few more things:
The code is "stringly-typed": your data is being represented as a string, despite having more structure. A list of booleans ([Bool]) would be much better.
The algorithm can be adapted to be cleaner. For the following, I'm assuming you are storing it like "01" = -2 "001" = 4, etc. If so, then we know that number = a + (-2) * b + (-2)^2 * c ... = a + (-2) * (b + (-2) * (c + ...)) where a,b,c,... are the digits. Looking at this, we can see the stuff inside the brackets is actually the same as the whole expression, just starting at the second digit. This is easy to express in Haskell (I'm using the list-of-bools idea.):
negbin [] = 0
negbin (x:xs) = (if x then 1 else 0) + (-2) * negbin xs
And that's the whole thing. If you aren't storing it in that order, then a call to reverse fixes that! (Being really tricky, one could write
negbin = foldr (\x n -> (if x then 1 else 0) + (-2)*n) 0
)

Some problems:
x == 0 or x == 1, but x is a Char, so you mean x == '0'.
You write (xs:x). There's no pattern for matching at the end of a list. Perhaps use a helper function that reverses the list first.
[xs] has one element, and will never be "". Use a base case instead.
Pattern matching is more helpful than equality checking.
** is for floating point powers, ^ is for integer powers
You often use [xs] where you mean xs. You don't need to put square brackets to make a list.
Here's a rewrite that works:
negbin_dezi1 :: NegaBinary -> Integer
negbin_dezi1 xs = negbin (reverse xs) 0
negbin [] _ = 0
negbin (x:xs) n
| x == '0' = negbin xs (n+1)
| x == '1' = (-2)^n + (negbin xs (n+1))
It would be nicer to use pattern matching:
negbin_dezi2 :: NegaBinary -> Integer
negbin_dezi2 xs = negbin (reverse xs) 0 where
negbin [] _ = 0
negbin ('0':xs) n = negbin xs (n+1)
negbin ('1':xs) n = (-2)^n + negbin xs (n+1)
But maybe it would be nicer to convert '0' to 0 and '1' to 1 and just multiply by that:
val :: Char -> Int
val '0' = 0
val '1' = 1
negbin_dezi3 :: NegaBinary -> Integer
negbin_dezi3 xs = negbin (reverse xs) 0 where
negbin [] _ = 0
negbin (x:xs) n = val x * (-2)^n + negbin xs (n+1)
I'd not write it that way, though:
A completely different approach is to think about the whole thing at once.
"10010" -rev> [0,1,0,0,1] -means> [ 0, 1, 0, 0, 1 ]
[(-2)^0, (-2)^1, (-2)^2, (-2)^3, (-2)^4]
so let's make both lists
powers = [(-2)^n | n <- [0..]]
coefficients = reverse.map val $ xs
and multiply them
zipWith (*) powers coefficients
then add up, giving:
negbin_dezi4 xs = sum $ zipWith (*) powers coefficients
where powers = [(-2)^n | n <- [0..]]
coefficients = reverse.map val $ xs
You could rewrite powers as map ((-2)^) [0..],
or even nicer: powers = 1:map ((-2)*) powers.
(It's nicer because it reuses previous calculations and is pleasantly clean.)

this
convB2D::NegaBinary->Integer
convB2D xs|(length xs)==0 =0
|b=='0' = convB2D(drop 1 xs)
|b=='1' = val+convB2D(drop 1 xs)
|otherwise= error "invalid character "
where b=head xs
val=(-2)^((length xs)-1)
worked for me.
I on the other hand have problems to convert dec->nbin :D

Related

Haskell Decimal to Binary

I am trying to build a function that converts a Decimal(Int) into a Binary number.
Unfortunately other than in java it is not possible to divide an int by two in haskell.
I am very new to functional programming so the problem could be something trivial.
So far I could not find another solution to this problem but
here is my first try :
fromDecimal :: Int -> [Int]
fromDecimal 0 = [0]
fromDecimal n = if (mod n 2 == 0) then
do
0:fromDecimal(n/2)
else
do
1:fromDecimal(n/2)
I got an java implementation here which I did before :
public void fromDecimal(int decimal){
for (int i=0;i<values.length;i++){
if(decimal % 2 = 0)
values[i]=true ;
decimal = decimal/ 2;
else {values[i]= false;
} }
}
Hopefully this is going to help to find a solution!
There are some problems with your solution. First of all, I advise not to use do at all, until you understand what do does. Here we do not need do at all.
Unfortunately other than in java it is not possible to divide an int by two in haskell.
It actually is, but the / operator (which is in fact the (/) function), has type (/) :: Fractional a => a -> a -> a. An Int is not Fractional. You can perform integer division with div :: Integral a => a -> a -> a.
So then the code looks like:
fromDecimal :: Int -> [Int]
fromDecimal 0 = [0]
fromDecimal n = if (mod n 2 == 0) then 0:fromDecimal (div n 2) else 1:fromDecimal (div n 2)
But we can definitely make this more elegant. mod n 2 can only result in two outcomes: 0 and 1, and these are exactly the ones that we use at the left side of the (:) operator.
So we do not need to use an if-then-else at all:
fromDecimal :: Int -> [Int]
fromDecimal 0 = [0]
fromDecimal n = mod n 2 : fromDecimal (div n 2)
Likely this is still not exactly what you want: here we write the binary value such that the last element, is the most significant one. This function will add a tailing zero, which does not make a semantical difference (due to that order), but it is not elegant either.
We can define an function go that omits this zero, if the given value is not zero, like:
fromDecimal :: Int -> [Int]
fromDecimal 0 = [0]
fromDecimal n = go n
where go 0 = []
go k = mod k 2 : go (div k 2)
If we however want to write the most significant bit first (so in the same order as we write decimal numbers), then we have to reverse the outcome. We can do this by making use of an accumulator:
fromDecimal :: Int -> [Int]
fromDecimal 0 = [0]
fromDecimal n = go n []
where go 0 r = r
go k rs = go (div k 2) (mod k 2:rs)
You cannot / integers in Haskell – division is not defined in terms of integral numbers! For integral division use div function, but in your case more suitable would be divMod that comes with mod gratis.
Also, you are going to get reversed output, so you can reverse manually it after that, or use more memory-efficient version with accumulator:
decToBin :: Int -> [Int]
decToBin = go [] where
go acc 0 = acc
go acc n = let (d, m) = n `divMod` 2 in go (m : acc) d
go will give you an empty list for 0. You may add it manually if the list is empty:
decToBin = (\l -> if null l then [0] else l) . go [] where ...
Think through how your algorithm will work. It starts from 2⁰, so it will generate bits backward from how we ordinarily think of them, i.e., least-significant bit first. Your algorithm can represent non-negative binary integers only.
fromDecimal :: Int -> [Int]
fromDecimal d | d < 0 = error "Must be non-negative"
| d == 0 = [0]
| otherwise = reverse (go d)
where go 0 = []
go d = d `rem` 2 : go (d `div` 2)
In Haskell, when we generate a list in reverse, go ahead and do so but then reverse the result at the end. The reason for this is consing up a list (gluing new items at the head with :) has a constant cost and the reverse at the end has a linear cost — but appending with ++ has a quadratic cost.
Common Haskell style is to have a private inner loop named go that the outer function applies when it’s happy with its arguments. The base case is to terminate with the empty list when d reaches zero. Otherwise, we take the current remainder modulo 2 and then proceed with d halved and truncated.
Without the special case for zero, fromDecimal 0 would be the empty list rather than [0].
The binary numbers are usually strings and not really used in calculations.
Strings are also less complicated.
The pattern of binary numbers is like any other. It repeats but at a faster clip.
Only a small set is necessary to generate up to 256 (0-255) binary numbers.
The pattern can systematically be expanded for more.
The starting pattern is 4, 0-3
bd = ["00","01","10","11"]
The function to combine them into larger numbers is
d2b n = head.drop n $ [ d++e++f++g | d <- bd, e <- bd, f <- bd, g <- bd]
d2b 125
"01111101"
If it's not obvious how to expand, then
bd = ["000","001","010","011","100","101","110","111"]
Will give you up to 4096 binary digits (0-4095). All else stays the same.
If it's not obvious, the db2 function uses 4 pairs of binary numbers so 4 of the set. (2^8) - 1 or (2^12) - 1 is how many you get.
By the way, list comprehension are sugar coated do structures.
Generate the above patterns with
[ a++b | a <- ["0","1"], b <- ["0","1"] ]
["00","01","10","11"]
and
[ a++b++c | a <- ["0","1"], b <- ["0","1"], c <- ["0","1"] ]
["000","001","010","011","100","101","110","111"]
More generally, one pattern and one function may serve the purpose
b2 = ["0","1"]
b4 = [ a++b++c++d | a <- b2, b <- b2, c <- b2, d <- b2]
b4
["0000","0001","0010","0011","0100","0101","0110","0111","1000","1001","1010","1011","1100","1101","1110","1111"]
bb n = head.drop n $ [ a++b++c++d | a <- b4, b <- b4, c <- b4, d <- b4]
bb 32768
"1000000000000000"
bb 65535
"1111111111111111"
To calculate binary from decimal directly in Haskell using subtraction
cvtd n (x:xs) | x>n = 0:(cvtd n xs)
| n>x = 1:(cvtd (n-x) xs)
| True = 1:[0|f<-xs]
Use any number of bits you want, for example 10 bits.
cvtd 639 [2^e|e<-[9,8..0]]
[1,0,0,1,1,1,1,1,1,1]
import Data.List
dec2bin x =
reverse $ binstr $ unfoldr ndiv x
where
binstr = map (\x -> "01" !! x)
exch (a,b) = (b,a)
ndiv n =
case n of
0 -> Nothing
_ -> Just $ exch $ divMod n 2

Function containing head and tail functions throws empty list error

I'm trying the solve the first question in Advent of Code 2017, and come up with the following solution to calculate the needed value:
checkRepetition :: [Int] -> Bool
checkRepetition [] = False
checkRepetition (x:xs)
| x == ( head xs ) = True
| otherwise = False
test :: [Int] -> Int
test [] = 0
test [x] = 0
test xs
| checkRepetition xs == True = ((head xs)*a) + (test (drop a xs))
| otherwise = test (tail xs)
where
a = (go (tail xs)) + 1
go :: [Int] -> Int
go [] = 0
go xs
| checkRepetition xs == True = 1 + ( go (tail xs) )
| otherwise = 0
However, when I give an input that contains repetitive numbers such as [1,3,3], it gives the error
*** Exception: Prelude.head: empty list
However, for 1.5 hours, I couldn't figure out exactly where this error is generated. I mean any function that is used in test function have a definition for [], but still it throws this error, so what is the problem ?
Note that, I have checked out this question, and in the given answer, it is advised not to use head and tail functions, but I have tested those function for various inputs, and they do not throw any error, so what exactly is the problem ?
I would appreciate any help or hint.
As was pointed out in the comments, the issue is here:
checkRepetition (x:xs)
| x == ( head xs ) = True
xs is not guaranteed to be a non-empty list (a one-element list is written as x:[], so that (x:xs) pattern matches that xs = []) and calling head on an empty list is a runtime error.
You can deal with this by changing your pattern to only match on a 2+ element list.
checkRepetition [] = False
checkRepetition [_] = False
checkRepetition (x1:x2:_) = x1 == x2
-- No need for the alternations on this function, by the way.
That said, your algorithm seems needlessly complex. All you have to do is check if the next value is equal, and if so then add the current value to the total. Assuming you can get your String -> [Int] on your own, consider something like:
filteredSum :: [Int] -> Int
filteredSum [] = 0 -- by definition, zero- and one-element lists
filteredSum [_] = 0 -- cannot produce a sum, so special case them here
filteredSum xss#(first:_) = go xss
where
-- handle all recursive cases
go (x1:xs#(x2:_)) | x1 == x2 = x1 + go xs
| otherwise = go xs
-- base case
go [x] | x == first = x -- handles last character wrapping
| otherwise = 0 -- and if it doesn't wrap
-- this should be unreachable
go [] = 0
For what it's worth, I think it's better to work in the Maybe monad and operate over Maybe [Int] -> Maybe Int, but luckily that's easy since Maybe is a functor.
digitToMaybeInt :: Char -> Maybe Int
digitToMaybeInt '0' = Just 0
digitToMaybeInt '1' = Just 1
digitToMaybeInt '2' = Just 2
digitToMaybeInt '3' = Just 3
digitToMaybeInt '4' = Just 4
digitToMaybeInt '5' = Just 5
digitToMaybeInt '6' = Just 6
digitToMaybeInt '7' = Just 7
digitToMaybeInt '8' = Just 8
digitToMaybeInt '9' = Just 9
digitToMaybeInt _ = Nothing
maybeResult :: Maybe Int
maybeResult = fmap filteredSum . traverse digitToMaybeInt $ input
result :: Int
result = case maybeResult of
Just x -> x
Nothing -> 0
-- this is equivalent to `maybe 0 id maybeResult`
Thank you for the link. I went there first to glean the purpose.
I assume the input will be a string. The helper function below constructs a numeric list to be used to sum if predicate is True, that is, the zipped values are equal, that is, each number compared to each successive number (the pair).
The helper function 'nl' invokes the primary function 'invcap' Inverse Captcha with a list of numbers.
The nl function is a list comprehension. The invcap function is a list comprehension. Perhaps the logic in this question is at fault. Overly complicated logic is more likely to introduce errors. Proofs are very much easier when logic is not cumbersome.
The primary function "invcap"
invcap l = sum [ x | (x,y) <- zip l $ (tail l) ++ [head l], x == y]
The helper function that converts a string to a list of digits and invokes invcap with a list of numeric digits.
nl cs = invcap [ read [t] :: Int | t <- cs]
Invocation examples
Prelude> nl "91212129" ......
9 ' ' ' ' ' ' ' ' ' ' ' ' '
Prelude> nl "1122" ......
3

Haskell: last digit of a very large number

I'm trying to work out the last digit of a very large number. The challenge is that I'm getting the error
*** Exception: Prelude.!!: negative index
which I don't think should be possible. This happens when I try:
lastDigit [27,15,14]
Here is my code, which is based on https://brilliant.org/wiki/finding-the-last-digit-of-a-power/:
In this case, n becomes 7 and modList 7 gives the recurring sequence [1,7,9,3,1,7,9,3...], which is the first argument of (!!) in the relevant guard. The second argument of (!!) gives 1 because (y:ys) is (15,14) and rem (powers (15 ^ 14)) 4 is 1. Please help.
lastDigit :: [Integer] -> Integer
lastDigit [] = 1
lastDigit [x] = x `mod` 10
lastDigit [x,y] = x ^ y `mod` 10
lastDigit (x:y:ys)
| y == 0 && head ys /= 0 = 1
| n == 0 = 0
| n == 9 || n == 4 = (!!) (modList n) (rem (fromIntegral $ powers (y:ys)) 2)
| n == 2 || n == 3 || n == 7 || n == 8 = (!!) (modList n) (rem (fromIntegral $ powers (y:ys)) 4)
| otherwise = n
where n = mod x 10
powers xs = foldr1 (^) xs
modList n = drop 3 . take 30 $ cycle [mod x 10| x <- map (n^) $ take 4 [1..]]
You should be very specific about the types, otherwise they might get implicit converted during calculations. If you add Int type to your algorithm, ghc will not complain and run into an negative index exception
(fromIntegral $ powers (y:ys)) 2 :: Int)
but if you provide
(fromIntegral $ powers (y:ys)) 2 :: Integer)
it will result in
• Couldn't match expected type ‘Int’ with actual type ‘Integer’
• In the second argument of ‘(!!)’, namely
‘(rem (fromIntegral $ powers (y : ys)) 2 :: Integer)’
As you can see you have an implicit Int conversion there. Try to split up your function into smaller ones and provide a type signature, then you should be able to successfully align the types and calculate with Integers instead of Int.

How do I add the contents of a string?

Im am making a function which compares two strings to see if one is a rearrangement of the other. for example "hhe" and "heh" would produce true but "hhe" and "hee" would be false. I thought I could do this by summing the elements of the string and seeing if they are the same. I am knew to haskell, so I dont know if I can sum chars like in C. Code so far:
comp :: String -> String-> Bool
comp x y = (sum x) == (sum y)
This produces an error when compiling.
You can first sort, then compare the strings
import Data.List
import Data.Function
comp = (==) `on` sort
which can then be used like this
"abcd" `comp` "dcba" --yields True
It doesn't make sense to "sum" two strings. Use permutations instead:
comp :: String -> String -> Bool
comp x = (`elem` permutations x)
Live demo
Though there are problems with your implementation, as suggested by others, the direct answer to your question is that you can first convert characters to Int (a type that supports arithmetic) with fromEnum.
> sum . map fromEnum $ "heh"
309
Taking your example code at face value, the problem with it is that Char doesn't implement Num, so sum :: Num a => [a] -> a is incompatible.
We can fix that, however, by using fromEnum to convert the Chars to Ints:
isPermutationOf :: String -> String-> Bool
isPermutationOf x y = hash x == hash y
where hash = sum . map fromEnum
And this will work on your example case:
λ isPermutationOf "hhe" "heh"
True
The downside is that it also has some false positives:
λ isPermutationOf "AAA" "ab"
True
We can try to reduce those somewhat by making sure that the lengths, maxes, and mins of the inputs are the same:
isPermutationOf :: String -> String-> Bool
isPermutationOf x y = hash x == hash y && maximum x == maximum y && minimum x == minimum y
where hash = sum . map fromEnum
But though that catches some cases
λ isPermutationOf "AAA" "ab"
False
It doesn't catch them all
λ isPermutationOf "abyz" "acxz"
True
To do that, we really need to make sure we've got the same number of each Char in both inputs. We could solve this by using a Data.Map.Map to store the counts of each Char or by using Data.List.sort to sort each of the inputs, but if we only want to use the Prelude, we'll need to roll our own solution.
There's any number of examples on how to write quicksort in haskell out there, so I'm not going to tell you how to do that. So here's a dumb isPermutationOf that uses math instead.
isPermutationOf xs ys = all (\k -> powsum k as == powsum k bs) [0..n]
where as = map fromEnum xs
bs = map fromEnum ys
n = length xs
powsum k zs = sum (map (^k) zs)
Basically, we can view an n-length string as a set of n unknowns. isPermutationOf checks the n+1 equations:
eq0: x00 + x10 + ... + xn-10 = y00 + y10 + ... + ym-10
eq1: x01 + x11 + ... + xn-11 = y01 + y11 + ... + ym-11
eq2: x02 + x12 + ... + xn-12 = y02 + y12 + ... + ym-12
...
eqn: x0n + x1n + ... + xn-1n = y0n + y1n + ... + ym-1n
eq0 is essentially a length check. Given xs, the other n equations work out to n equations for n unknowns, which will give us a solution for ys unique up to permutation.
But really, you should use a (bucket) sort instead, because the above algorithm is O(n^2), which is slow for this kind of check.
if you do not want to use standard library(learning purpose) function, you can quickSort both string and check for equality of string (bonus: quickSort)
isEqual :: String -> String -> Bool
isEqual a b = sortString a == sortString b
where
sortString :: String -> String
sortString [] = []
sortString (x:xs) = sortString (filter (<x) xs) ++ [x] ++ sortString (filter (>=x) xs)

Comparing 3 output lists in haskell

I am doing another Project Euler problem and I need to find when the result of these 3 lists is equal (we are given 40755 as the first time they are equal, I need to find the next:
hexag n = [ n*(2*n-1) | n <- [40755..]]
penta n = [ n*(3*n-1)/2 | n <- [40755..]]
trian n = [ n*(n+1)/2 | n <- [40755..]]
I tried adding in the other lists as predicates of the first list, but that didn't work:
hexag n = [ n*(2*n-1) | n <- [40755..], penta n == n, trian n == n]
I am stuck as to where to to go from here.
I tried graphing the function and even calculus but to no avail, so I must resort to a Haskell solution.
Your functions are weird. They get n and then ignore it?
You also have a confusion between function's inputs and outputs. The 40755th hexagonal number is 3321899295, not 40755.
If you really want a spoiler to the problem (but doesn't that miss the point?):
binarySearch :: Integral a => (a -> Bool) -> a -> a -> a
binarySearch func low high
| low == high = low
| func mid = search low mid
| otherwise = search (mid + 1) high
where
search = binarySearch func
mid = (low+high) `div` 2
infiniteBinarySearch :: Integral a => (a -> Bool) -> a
infiniteBinarySearch func =
binarySearch func ((lim+1) `div` 2) lim
where
lim = head . filter func . lims $ 0
lims x = x:lims (2*x+1)
inIncreasingSerie :: (Ord a, Integral i) => (i -> a) -> a -> Bool
inIncreasingSerie func val =
val == func (infiniteBinarySearch ((>= val) . func))
figureNum :: Integer -> Integer -> Integer
figureNum shape index = (index*((shape-2)*index+4-shape)) `div` 2
main :: IO ()
main =
print . head . filter r $ map (figureNum 6) [144..]
where
r x = inIncreasingSerie (figureNum 5) x && inIncreasingSerie (figureNum 3) x
Here's a simple, direct answer to exactly the question you gave:
*Main> take 1 $ filter (\(x,y,z) -> (x == y) && (y == z)) $ zip3 [1,2,3] [4,2,6] [8,2,9]
[(2,2,2)]
Of course, yairchu's answer might be more useful in actually solving the Euler question :)
There's at least a couple ways you can do this.
You could look at the first item, and compare the rest of the items to it:
Prelude> (\x -> all (== (head x)) $ tail x) [ [1,2,3], [1,2,3], [4,5,6] ]
False
Prelude> (\x -> all (== (head x)) $ tail x) [ [1,2,3], [1,2,3], [1,2,3] ]
True
Or you could make an explicitly recursive function similar to the previous:
-- test.hs
f [] = True
f (x:xs) = f' x xs where
f' orig (y:ys) = if orig == y then f' orig ys else False
f' _ [] = True
Prelude> :l test.hs
[1 of 1] Compiling Main ( test.hs, interpreted )
Ok, modules loaded: Main.
*Main> f [ [1,2,3], [1,2,3], [1,2,3] ]
True
*Main> f [ [1,2,3], [1,2,3], [4,5,6] ]
False
You could also do a takeWhile and compare the length of the returned list, but that would be neither efficient nor typically Haskell.
Oops, just saw that didn't answer your question at all. Marking this as CW in case anyone stumbles upon your question via Google.
The easiest way is to respecify your problem slightly
Rather than deal with three lists (note the removal of the superfluous n argument):
hexag = [ n*(2*n-1) | n <- [40755..]]
penta = [ n*(3*n-1)/2 | n <- [40755..]]
trian = [ n*(n+1)/2 | n <- [40755..]]
You could, for instance generate one list:
matches :: [Int]
matches = matches' 40755
matches' :: Int -> [Int]
matches' n
| hex == pen && pen == tri = n : matches (n + 1)
| otherwise = matches (n + 1) where
hex = n*(2*n-1)
pen = n*(3*n-1)/2
tri = n*(n+1)/2
Now, you could then try to optimize this for performance by noticing recurrences. For instance when computing the next match at (n + 1):
(n+1)*(n+2)/2 - n*(n+1)/2 = n + 1
so you could just add (n + 1) to the previous tri to obtain the new tri value.
Similar algebraic simplifications can be applied to the other two functions, and you can carry all of them in accumulating parameters to the function matches'.
That said, there are more efficient ways to tackle this problem.

Resources