I am using mmap() to map a shared memory object to a process. My question has two parts:
1) what is the size limit for mmap() to a linux process? (is there such limit?)
2) after the process running a while, I think the process virtual memory address space will be somehow fragmented. Will this impact the max size I can do mmap() in this process?
The linux kernel used is 2.6.27. The size of the shared memory object is around 32MB. I am trying to access what is the possibility that mmap() fails with such shared memory object due to no enough virtual address space.
There is no restriction on mmap size but would depend on the existing address space used by the given process. But it is highly suggested that you dont mmap to a large contiguous virtual address space. Another suggestion would be to use the mmap "just-in-time" when a specific physical address (or a device address) is accessed and unmap once done
/proc/sys/vm/overcommit_memory controls the maximum on Linux
I have explained this in detail at: maximum memory which malloc can allocate
Basically, the value of 1 allows arbitrary virtual allocations, while 0 and 2 have more complicated limit calculations.
Related
I think kmalloc() allocates continuous physical pages in the kernel because the virtual memory space is directly mapping to the physical memory space, by simply adding an offset.
However, I still don't understand why it is more efficient than vmalloc().
It still needs to go through the page table (the kernel page table), right? Because the MMU is not disabled when the process is switching to the kernel. So why Linux directly maps the kernel virtual space to the physical memory? What is the benefit?
In include/asm-x86/page_32.h, there is:
#define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)
#define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))
Why does the kernel need to calculate the physical address? It has to use the virtual address to access the memory anyway, right? I cannot figure out why the physical address is needed.
Your Queries :-
why is Kmalloc more efficient than vmalloc()?
kmalloc allocates a region of physically contiguous (also virtually contiguous) memory. The physical to virtual map is one-to-one.
For vmalloc(), an MMU/PTE value is allocated for each page; the physical to virtual mapping is not continuous.
vmalloc is often slower than kmalloc, because it may have to remap the buffer space into a virtually contiguous range. kmalloc never remaps.
why Linux directly maps the kernel virtual space to the physical memory?
There is one concept in linux kernel known as DMA(Direct Memory Access) which require contiguous physical memory. so when kernel trigger DMA operation we need to specify physically contiguous memory. that's why we need direct memory mapping.
Why the kernel needs to calculate the physical address? It has to use the virtual address to access the memory anyway, right?
for this question answer you need to read difference between virtual memory and physical memory. but in short, every load and store operation is performed on physical memory(You RAM on PC)
physical memory point to RAM.
virtual memory point to swap area of your HARD DISK.
I want to allocate a large portion of memory using malloc() for an indefinite amount of time. I may touch the memory for a long time let say 1 minute. How do i prevent the kernel from taking that memory away from the process?
I can not re allocate that memory because it is being used by another device that is outside of the kernels control.
In the Linux, you can allocate memory in user space, such as with malloc or a mmap, pass it down to the kernel, and then in the kernel, obtain references to the memory with get_user_pages. This will prevent the pages from going away, and also allow them to be accessed from any address space as struct page * references (and requiring kmap and kunmap if CONFIG_HIGHMEM is in effect). These pages will not be contiguous physical memory, however, and they may not be in a suitable range for DMA.
Memory to be accessed by devices is usually allocated in the kernel (e.g. using kmalloc with GFP_DMA. For allocations larger than a page, kmalloc finds consecutive physical pages, too. Once obtained, kmalloc-ed memory can be mapped into user space with remap_pfn_range.
As process has virtual memory which is copied into RAM during run time. As given in the previous post.
Which part of process virtual memory layout does mmap() uses?
I have following doubles :
If memory mapping is inside unallocated memory and it is inside process's virtual memory. As virtual memory helps to avoid one process to touch other process's virtual memory. Then how can memory mapping is used for Interprocess Communication(IPC)?
In OS like Linux, whether has each individual process separate section of heap, stack and memory mapping or all processes have one common section for heap, stack and MMAP?
Example :
if there are P1,P2 and P3 processes are running on linux OS. will all have common table as given in picture or each individual task have separate table to each section.
In 32 bit system, 2^32=4 gigabytes of virtual memory is possible and 1G byte is reserved for kernel and 3 gigabytes for userspace applications. can each individual process have up to 3 gigabytes of virtual memory or sum of all userspace applications size could be 3 gigabytes (i.e virtual memory size of (P1+P2+P3)<=3 gigabytes)?
--
Learner
Using memory mapping for IPC works by mapping the same range of physical memory into two or more virtual address ranges in different processes. This works for communication because both processes are using the exact same memory cells (although they might "see" them differently, at different addresses). You change a value in one mapping, and it is instantly visible in the other mapping in a different process because it is the very same memory.
Every process has its own independent stack and heap. The OS does not care about that at all, it only cares about pages. The heap and the stack are things that are implemented by the application (via the runtime). When you call a function like malloc, the allocator in the runtime either returns a block that it already had reserved earlier or one that it has recylced (you called free earlier), or it asks the OS to reserve some more memory (sbrk or mmap). When you first access this memory, the OS sees a page fault and verifies that you are allowed to access this location (because you've reserved it) and then provides a valid page.
Every process can use (as in "reserve") the whole available address space (3GiB in your example). This does not interfere with any other process. Note that due to fragmentation and alignment, and because your executable and the stack take away a little bit, you will in practice not be able to allocate the full 3 GiB, but you can get close to it.
All processes together can use as much virtual memory as is available on the system (physical RAM plus swap space), but they can only use as much as there is physical memory available at the same time (minus a little bit for this and that, like unpageable kernel memory and such).
In Linux x86-64 environment, is the entire process allocated on virtual memory pages? By entire process i mean the text, data, bss, heap and stack?
Also, when libc calls Brk, does the kernel returns memory that is managed via pages by virtual memory manager ?
Lastly, can a process get memory on heap, which is not managed by virtual memory manager, in other words, can a process get access to physical memory?
In Linux x86-64 environment, is the entire process allocated on virtual memory pages?
Yes, all processes have a virtual address space, i.e. have their own page table and virtual memory to physical memory mapping pattern.
Also, when libc calls Brk, does the kernel returns memory that is managed via pages by virtual memory manager ?
Yes, in fact, if you aren't hacking the OS kernel, virtual memory is transparent to you.
can a process get memory on heap, which is not managed by virtual memory manager, in other words, can a process get access to physical memory?
No, you can't manage physical memory per my knowledge unless you run your program without support from OS. Because process has its own virtual space, all your action related to memory management is on virtual memory.
A process has one or more tasks (scheduled by the kernel) which for a multi-threaded process are the processes' threads (and for a non-threaded process the task running the process), and it has an address space (and some other resources, e.g. opened file descriptors).
Of course, the address space is in virtual memory. The kernel is allowed to swap pages (to e.g. the swap zone of your disk). It tries hard to avoid doing that (swapping pages to disk is very slow, because the disk access time is in dozens of milliseconds, while the RAM access time is in tenth of microsecond).
text & bss etc are virtual memory segments, which are memory mappings. You can think of a process space as a memory map. The mmap(2) system call is the way to modify it. When an executable is started with execve system call, the kernel establish a few mappings (e.g for text, data, bss, stack, ...). The sbrk(2) system call also change it. Most malloc implementations use mmap (at least for big enough zones) and sometimes sbrk.
You can avoid that a memory range is swapped out by locking it into RAM using the mlock(2) syscall, which usually requires root privilege. It is rarely useful in practice (unless you code real-time applications). There is also the msync syscall (to flush memory to disk), you can of course map a portion of file into virtual memory (using mmap), you can change the protection with mprotect(2), remove map with munmap(2), extend a mapping with mremap -a Linux specific syscall-, and you could even catch the SIGSEGV signal and handle it (often in a machine specific way). The madvise(2) syscall enables you to tune paging with hints.
You can understand the memory map of a process of pid 1234 by reading the /proc/1234/maps file (or also /proc/1234/smaps). (From inside an application, you can use /proc/self/ instead of /proc/1234/ ...) I suggest you to run in a terminal:
cat /proc/self/maps
which will show you the memory map of the process running that cat command. You can also use the pmap utility.
Most recent linux kernels provide Adress Space Layout Randomization (so two similar processes running the same program on the same input have different mmap-ed & malloc-ed addresses). You could disable it thru /proc/sys/kernel/randomize_va_space
Except in very rare circumstances (uClinux), processes only see virtual memory, which is mapped to physical memory by the kernel.
The kernel can be asked to make specific mappings that give a predictable physical address for a given virtual address; you need the appropriate capability to do that however, as this breaks down the process separation.
On execve, the current mappings are replaced by the loadable segments from the ELF file specified; these are mapped so that referenced pages are loaded from the ELF file (some initial readahead is also performed). The brk system call mainly extends the non-executable mapping with the highest addresses (excluding the stack mapping) by a few pages, allowing the process to access more virtual addresses without being sent a SIGSEGV.
The heap is generally managed by the process internally, but the virtual address space assigned to heap objects must be known to the virtual memory manager beforehand in order to create a mapping. malloc will generally look into its internal tables for a region that is already mapped and usable, and if none can be found, use either brk() or mmap() to create more mappings.
In linux kernel, mem_map is the array which holds all "struct page" descriptors. Those pages includes the 128MiB memory in lowmem for dynamically mapping highmem.
Since the lowmem size is 1GiB, so the mem_map array has only 1GiB/4KiB=256KiB entries. If each entry size is 32 byte, then the mem_map memory size = 8MiB. But if we could use mem_map to map all 4GiB physical memory(if we have so much physical memory available on x86-32), then the mem_map array would occupy 32MiB, that is not a lot of kernel memory(or am i wrong?).
So my question is: why do we need to use that 128MiB in low for indirect highmem mapping in the first place? Or put another way, why not to map all those max 4GiB physical memory(if available) in the kernel space directly?
Note: if my understanding of the kernel source above is wrong, please correct. Thanks!
Look Here: http://www.xml.com/ldd/chapter/book/ch13.html
Kernel low memory is the 'real' memory map, addressed with 32-bit pointers on x86.
Kernel high memory is the 'virtual' memory map, addressed with virtual structures on x86.
You don't want to map it all into the kernel address space, because you can't always address all of it, and you need most of your memory for virtual memory segments (virtual, page-mapped process space.)
At least, that's how I read it. Wow, that's a complicated question you asked.
To throw more confusion, chapter 13 talks about some PCI devices not being able to address the 32-bit space, which was the genesis of my previous comment:
On x86, some kernel memory usage is limited to the first Gigabyte of memory bacause of DMA addressing concerns. I'm not 100% familiar with the topic, but there's a comapatibility mode for DMA on the PCI bus. That may be what you are looking at.
3.6 GB is not the ceiling when using physical address extension, which is commonly needed on most modern x86 boards, especially with memory hotplug.
Or put another way, why not to map all those max 4GiB physical
memory(if available) in the kernel space directly?
One reason is userspace: every usespace process have its own virtual address space. Suppose you have 4Gb of RAM on x86. So if we suggest that kernel owns 1Gb of memory (~800 directly mapped + ~200 vmalloc) all other ~3Gb should be dynamically distributed between processes spinning in user space. So how can you map your 4Gbs directly when you have a several address spaces?
why do we need zone_highmem on x86?
The reason is the same. Kernel reserves only ~800Mb for low mem. All other memory will be allocated and connected with particular virtual address only on demand. For example if you will execute a binary a new virtual address space will be created and some pages will be allocated for storing your binary code and data (heap ,stack ...). So the key attribute of high mem is to serve dynamic memory allocation requests, you never know in advance what will be triggered by userspace...