C# 4, COM interop and UPnP: A trying triumvirate - c#-4.0

I'm trying to write a bit of code (just for home use) that uses UPnP for NAT traversal, using C# 4 and Microsoft's COM-based NAT traversal API (Hnetcfg.dll).
Unfortunately (or perhaps fortunately) the last time I had to do COM interop in .NET was sometime around the last ice age, and I seem to be fundamentally confused about C#'s use of dynamic types for interop and how to write a callback (so that the COM server calls my managed code).
Here's an exciting few lines of code:
// Referencing COM NATUPNPLib ("NATUPnP 1.0 Type Library")
using System;
using NATUPNPLib;
class NATUPnPExample
{
public delegate void NewNumberOfEntriesDelegate(int lNewNumberOfEntries);
public static void NewNumberOfEntries(int lNewNumberOfEntries)
{
Console.WriteLine("New number of entries: {0}", lNewNumberOfEntries);
}
public static void Main(string[] args)
{
UPnPNAT nat = new UPnPNAT();
NewNumberOfEntriesDelegate numberOfEntriesCallback = NewNumberOfEntries;
nat.NATEventManager.NumberOfEntriesCallback = numberOfEntriesCallback;
nat.StaticPortMappingCollection.Add(4555, "TCP", 4555, "192.168.0.1", true, "UPnPNAT Test");
// Presumably my NewNumberOfEntries() method should be called by the COM component about now
nat.StaticPortMappingCollection.Remove(4555, "TCP");
}
}
In the above code, the Add and Remove calls work absolutely fine. Terrific.
The trouble is, I would also like to know when the number of port mapping entries have changed, and to do so I need to register a callback interface (INATEventManager::put_NumberOfEntriesCallback), which must support the INATNumberOfEntriesCallback or IDispatch interfaces. VS2012's object browser describes INATEventManager::put_NumberOfEntriesCallback thusly:
dynamic NumberOfEntriesCallback { set; }
Right, so I was under the impression that in C# 4 I shouldn't have to decorate anything with fancy attributes and that I can register my callback simply by jamming a delegate into INATEventManager::put_NumberOfEntriesCallback in a vulgar manner and leaving .NET to worry about IDispatch and clear up the mess; but it appears that I'm terribly wrong.
So, er... What should I do to ensure my NewNumberOfEntries method is called?
I'm also slightly concerned that I can write nat.NATEventManager.NumberOfEntriesCallback = 1; or nat.NATEventManager.NumberOfEntriesCallback = "Sausages"; without an exception being thrown.

It seems that I was able to make it work. Two options - with a custom interface "INATNumberOfEntriesCallback" (which does not seem to be declared in the type library btw, you need to declare it yourself) and using plain dispatch with DispId(0). The conversion to the IDispatch/IUnknown is preformed by the framework automatically. So:
Option 1.
Declare the INATNumberOfEntriesCallback and make a callback class which implements that interface (the tricky part is Guid - it comes from the "Natupnp.h" file, and does not seem to appear to be in the type library).
// declare INATNumberOfEntriesCallback interface
[ComVisible(true)]
[Guid("C83A0A74-91EE-41B6-B67A-67E0F00BBD78")]
[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
public interface INATNumberOfEntriesCallback
{
void NewNumberOfEntries(int val);
};
// implement callback object
[ComVisible(true)]
[ClassInterface(ClassInterfaceType.None)]
public class CallbackNewNumberOfEntries : INATNumberOfEntriesCallback
{
public void NewNumberOfEntries(int val)
{
Console.WriteLine("Number of entries changed: {0}", val);
}
}
class NATUPnPExample
{
public static void Main(string[] args)
{
var nat = new UPnPNAT();
nat.NATEventManager.NumberOfEntriesCallback = new CallbackNewNumberOfEntries();
nat.StaticPortMappingCollection.Add(4555, "TCP", 4555, "192.168.0.1", true, "UPnPNAT Test");
// Presumably my NewNumberOfEntries() method should be called by the COM component about now
nat.StaticPortMappingCollection.Remove(4555, "TCP");
}
}
Option 2.
Use plain dispatch. The documentation says that you can use dispid(0) and it should be called, with 4 (!) parameters (see the remarks section in docs). So basically the following construction seems to work in "dispatch" way:
[ComVisible(true)]
[ClassInterface(ClassInterfaceType.AutoDispatch)]
public class CallbackDisp
{
[DispId(0)]
public void OnChange(string updateType, object obj, object name, object val)
{
Console.WriteLine("{0}: {1} = {2}", updateType, name, val);
}
}
class NATUPnPExample
{
public static void Main(string[] args)
{
var nat = new UPnPNAT();
nat.NATEventManager.NumberOfEntriesCallback = new CallbackDisp();
nat.StaticPortMappingCollection.Add(4555, "TCP", 4555, "192.168.0.1", true, "UPnPNAT Test");
// Presumably my NewNumberOfEntries() method should be called by the COM component about now
nat.StaticPortMappingCollection.Remove(4555, "TCP");
}
}

I had the same problem you had, and since there isn't much help on the topic your posting helped tremendously! It wouldn't let me comment on your answer because I don't have enough points or whatever but your answer is the best, but doesn't quite work how I thought it would.
nat.NATEventManager.ExternalIPAddressCallback = new CallbackDisp();
Works, using the same dispatch, and will tell you when the external IP changes. HOWEVER,
nat.NATEventManager.NumberOfEntriesCallback = new CallbackDisp();
only reports UPnP map changes from these conditions: A.) It was added/removed by the NATUPnP instance.. In this case:
nat.StaticPortMappingCollection.Add();
OR B.) it was already mapped when the instance was created:
var nat = new UPnPNAT();
As an example, if Utorrent was running when you started your program and you you had something to block the program from exiting(Console.WriteLine();) for example.. When you exit Utorrent the callback would fire, and notify you of the map changes. Which is exactly what I wanted in the first place. However, if you re-open Utorrent, or any other app that uses UPnP it will NOT fire the callback, and will not notify you of the change.
Needless to say it has been very frustrating. If you figure it out please share! I know I can easily implement the functionality by polling the StaticPortMappingCollection at a given interval, but it seems a little 'hacky' to me.

Related

Does Dart/Flutter have the concept of weak references?

I'm in the early stages of learning Dart & Flutter. I'm looking at how to implement an eventbus, which works fine, but I've noticed that Widgets (and/or their associated state) hold a strong reference to the (global) eventbus, causing a memory leak. The solution is to cancel the subscription in the widget-state's dispose method, but I'd like to know if there's a better approach (I'm coming from Swift which allows variables to be declared as 'weak').
EDIT
I ended up subclassing the state as follows... any better suggestions?
abstract class CustomState<T extends StatefulWidget> extends State {
List<StreamSubscription> eventSubscriptions = [];
void subscribeToEvent(Object eventClass, Function callback) {
StreamSubscription subscription = eventBus.on(eventClass).listen(callback);
eventSubscriptions.add(subscription);
}
void dispose() {
super.dispose();
eventSubscriptions.forEach((subscription) => subscription.cancel());
eventSubscriptions = null;
}
}
class MyEvent {
String text;
MyEvent(this.text);
}
class _MyHomePageState extends CustomState<MyHomePage> {
#override
void initState() {
super.initState();
subscribeToEvent(MyEvent, onEventFired);
}
void onEventFired(event) {
print('event fired: ${event.runtimeType} ${event.text}');
}
}
Dart doesn't provide weak reference feature.
An Expando has a weak reference behavior though.
Not sure if this is of use in your use case.
https://api.dartlang.org/stable/1.24.3/dart-core/Expando-class.html
https://groups.google.com/a/dartlang.org/forum/m/#!topic/misc/S7GGxegtJe4
What is the Dart "Expando" feature about, what does it do?
https://github.com/dart-lang/sdk/issues/16172
I sometimes use a Mixin that provides a list where I can add subscriptions and a dispose methode that cancels all subscriptions and add it to widgets and other classes where I need it.
As of 2020, I'd like to add to Günter's answer that I've just published a package that goes as close as possible to a weak-reference by implementing a weak-map and a weak-container, as well as cache functions that take advantage of weak references.
https://pub.dev/packages/weak_map
It's much easier to use than an Expando (it uses Expando internally).
Since dart 2.17 you can use WeakReference.
Any object wrapped in WeakReference(obj) is not kept from being garbage collected.
You access the object via the target property which becomes null when the object got garbage collected.
final myWeakRef = WeakReference(ExampleObj());
// access obj, may be null
print(myWeakRef.target);

Can a managed ref-class directly implement a COM interface?

Is there a built-in way to allow a managed ref-class to implement and expose a COM inerface that is safely callable from native code?
Looking at the C# side, this is easily done by decorating the target interface with the proper COM-interop attributes, for example:
Native Interface
interface ISampleGrabberCB: public IUnknown
{
virtual STDMETHODIMP SampleCB( double SampleTime, IMediaSample *pSample ) = 0;
virtual STDMETHODIMP BufferCB( double SampleTime, BYTE *pBuffer, long BufferLen ) = 0;
};
static const IID IID_ISampleGrabberCB = { 0x0579154A, 0x2B53, 0x4994,
{ 0xB0, 0xD0, 0xE7, 0x73, 0x14, 0x8E, 0xFF, 0x85 } };
Managed Equivalent Interface
[Guid("0579154A-2B53-4994-B0D0-E773148EFF85")]
[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]
[SuppressUnmanagedCodeSecurity]
public interface ISampleGrabberCB {
int BufferCB(double SampleTime, IntPtr pBuffer, int BufferLen);
int SampleCB(double SampleTime, IMediaSample pSample);
}
Once this declaration is done, through the magic of P-Invoke you can do something like this:
public class FooClass : ISampleGrabberCB {
int ISampleGrabberCB.BufferCB(double SampleTime, IntPtr pBuffer, int BufferLen) {
Console.WriteLine("BufferCB called");
}
int ISampleGrabberCB.SampleCB(double SampleTime, IMediaSample pSample) {
Console.WriteLine("SampleCB called");
}
public void SomeMethod(IBaseFilter aDirectShowFilter) {
ISampleGrabber sampleGrabber = (ISampleGrabber)aDirectShowFilter;
// By the magic of PInvoke, this is possible and works!
// ISampleGrabber->SetCallback() is expecting an ISampleGrabberCB* COM interface
// After the following line, native code is able to callback safely
// into our managed code
sampleGrabber.SetCallback(this, 0);
}
}
Is there a way to mimic this behavior on C++/CLI?
Evidently, the Interop plumbing to make this possible exists as it is used by C#. Furthermore, the compiler could generate the necessary managed interface from inspecting the available native interfaces (I still think we would need to provide the relevant Guids, as this is not an attribute within the native interface)
I just got curious about this topic and played around and I found out some minor differences:
I have IVI-COM class library on my PC, and always wanted to try to interface some of them, although the IVI also has .Net interfaces so it does not make too much sense...
I started with C#, where we get good IntelliSense support. I have added the necessary references and added a class to my project. With the object browser we can select an interface.
public class MyDmm : IIviDmmMultiPoint
{
}
After that just use IntelliSense (Ctrl-.) to add the ‘using’ statement and let them make the necessary properties and methods for us.
using Ivi.Dmm.Interop;
///...
public int Count
{
get
{
throw new NotImplementedException();
}
///...
So now we need the C++-CLI dialect :) Which is as follows:
using namespace IviDmmLib;
///...
public ref class Dmm : IIviDmmMultiPoint
{
Note that the name used by the using statement is different, we can obtain this by selecting the reference at the Solution Explorer and check the name shown at the ‘Properties’ below.
I did not fully complete the experiment but I saw that the COM library was x64 bit, so we may compile the project for the same.
Further interesting readings:
Windows Runtime C++ Template Library
Please, give me feedback if you find some more differences, so we can put them here too.

how to create models in nodejs

I am a .net developer, trying my hands on nodejs web api development.
I was wondering that whether we can create models in nodejs same as we create in asp.net web api.
For example
public class BaseResponse
{
public bool Success { get; set; }
public string ErrorMessage { get; set; }
}
public class MovieResponse : BaseResponse
{
public int MovieId { get; set; }
public string MovieName { get; set; }
}
This is how we do it in c#.
How can i create such models in nodejs.
Any npm package available?
There's good news and there's bad news. The bad news is the concept of classes and inheritance as you know it from other languages is not supported. The good news, JavaScript attempted to do something along that idea (although it did a miserable job implementing it). Below is an example of the code you provided using JavaScript:
function BaseResponse(success, errorMessage) {
this.success = success;
this.errorMessage = errorMessage;
}
function MovieResponse(success, errorMessage, movieId, movieName) {
BaseResponse.call(this, success, errorMessage); // Call the base class's constructor (if necessary)
this.movieId = movieId;
this.movieName = movieName;
}
MovieResponse.prototype = Object.create(BaseResponse);
MovieResponse.prototype.constructor = MovieResponse;
/**
* This is an example of an instance method.
*/
MovieResponse.prototype.instanceMethod = function(data) { /*...*/ };
/**
* This is an example of a static method. Notice the lack of prototype.
*/
MovieResponse.staticMethod = function(data) {/* ... */ };
// Instantiate a MovieResponse
var movieResInstance = new MovieResponse();
Mozilla has really good documentation on JavaScript and classes. In the code above, you are creating two functions BaseResponse and MovieResponse. Both of these functions act as constructors for an object with the appropriate "class" when you use the new keyword. You specify that MovieResponse inherits from BaseMovie with MovieResponse.prototype =Object.create(BaseResponse). This effectively sets MovieResponse's prototype chain equal to BaseResponse's prototype chain. You'll notice that immediately after setting MovieResponse's prototype chain I have to set its constructor to point to MovieResponse. If I didn't do this, every time you tried to initialize a MovieResponse, JavaScript would try to instead instantiate a BaseResponse (I told you they did a horrible job).
The rest of the code should be relatively straightforward. You can create instance methods on your brand new, shiny class by defining them on the prototype chain. If you define a function on BaseResponse that is not defined on MovieResponse but call the function on an instance of MovieResponse, JavaScript will "crawl" the prototype chain until it finds the function. Static methods are defined directly on the constructor itself (another weird feature).
Notice there is no concept of types or access modifiers (public/private). There are runtime tricks that you can implement to enforce types, but it's usually unnecessary in JavaScript and more prone to errors and inflexibility than adding such checks may justify.
You can implement the concept of private and protected members of a class in a more straightforward method than types. Using Node's require(), and assuming you wanted a private function called privateMethod you could implement it as:
function privateMethod() { /* privateMethod definition */ }
// Definition for MovieResponse's constructor
function MovieResponse() { /*...*/ }
module.exports = MovieResponse;
I will add a somewhat required commentary that I do not agree with: it is unnecessary to use inheritance in JavaScript. JavaScript uses a notion coined "duck typing" (if it looks like a duck and sounds like a duck, its a duck). Since JavaScript is weakly typed, it doesn't care if the object is a BaseResponse or MovieResponse, you can call any method or try to access any field you want on it. The result is usually an error or erroneous/error-prone code. I mention this here because you may come across the notion and its supporters. Know that such programming is dangerous and results in just bad programming practices.

C++ how to change private members of managed object using a native one?

I'm working on a student project. It's a network card game. The solution contains 3 projects. Client's GUI using Windows Forms so it has managed classes. Static client's library in native C++. GUI's project has reference to it thus uses 'Mixed Rules'. Server is in native C++ as well. I use RPC middleware for communication. It works only with native C++. That is why I need the static library to hide there all the details of communication on client's side.
Since the server can at any moment change its state and that should be shown in client's GUI, I use callback approach to change Windows Forms' components. And here I found a problem because I need to change private members of managed class with the help of a native object.
There are probably different ways to do that. My idea is sending a pointer to instance of managed class into instance of native class and saving it there. So later I can call from that native object public member functions of that managed class to change components.
This is from my 'Mixed Rules' GUI project:
//Native class for changing window 'Lobby'
class LobbyI : public ClientLib::Lobby {
public:
LobbyI();
~LobbyI();
//Should change window due to current Server's state
void reDraw(const CommonLogic::ServerState&);
};
// Managed class implements GUI for window 'Lobby'
// generated by Visual Studio designer
public ref class LobbyGUI : public System::Windows::Forms::Form {
//My members
ClientLib::Mediator* mediatorPtr; // Is it correct?
LobbyI* lobbyPtr; // ?
public:
LobbyGUI(void) {
InitializeComponent();
mediatorPtr = new ClientLib::Mediator(); // Is it correct?
lobbyPtr = new LobbyI(); // ?
mediatorPtr->setCallback(lobbyPtr);
}
protected:
~LobbyGUI() {
if (components) { delete components; }
delete lobbyPtr; // Is it correct?
lobbyPtr = nullptr; // ?
delete mediatorPtr; // ?
mediatorPtr = nullptr; // ?
}
private: System::Windows::Forms::Button^ buttonLogIn;
//...
This is from native static library ClientLib:
class Lobby {
public:
virtual ~Lobby();
virtual void reDraw(const CommonLogic::ServerState&) = 0;
};
class Mediator {
CommonLogic::ServerState serverState;
Lobby* lobbyPtr;
public:
Mediator();
~Mediator();
void setCallback(Lobby* ptr) { lobbyPtr = ptr; }
void reDrawLobby() { lobbyPtr->reDraw(serverState); }
};
This code builds ok. The only thing I need now is that the member function reDraw() of native derived class LobbyI is able to change the window implemented by managed class LobbyGUI. Thus getting and keeping and using pointer to it. And then I think it all will work. How to do that?
Maybe it's not the nicest implementation in general. I would be happy to read other suggestion.
I'm also doubtful about the way I used pointers to native classes inside managed class. Is it correct? It didn't work correct until I inserted ptr=nullptr; after delete ptr; in destructor.
UPDATE: Now I see redundancy in my code. Abstract class Lobby is useless. I need only to implement reDraw() function in managed class which will have obviously access to components of the window. And then pass safe pointer to native class function which expects pointer to a function as a parameter.
Finally I've solved it!! Using this article. In the following code a native object stores provided pointer to a function of managed object. So this callback function can be invoked at any time. A delegate is used as a form of type-safe function pointer. Instance of GCHandle is used to prevent the delegate from being relocated by garbage collector.
Here is simple CLR Console Application which increments and prints some integer using callback function invoked from native object. Thus we can "change private members of managed object using a native one".
using namespace System;
using namespace System::Runtime::InteropServices;
typedef void(__stdcall *ANSWERCB)(); // define type of callback function
#pragma unmanaged
class NativeClass {
ANSWERCB cbFuncPtr = 0; // pointer to callback function
public:
void setCallback(ANSWERCB fptr) {
cbFuncPtr = fptr;
incAndPrint();
}
void incAndPrint() { cbFuncPtr(); } // invokes callback which increments and prints
};
#pragma managed
ref class ManagedClass {
public: delegate void Del();
private:
Int32 i;
NativeClass* nativePtr;
Del^ delHandle;
GCHandle gch;
public:
ManagedClass(Int32 ii) : i(ii) {
nativePtr = new NativeClass;
delHandle = gcnew Del(this, &ManagedClass::changeAndPrintInt);
gch = GCHandle::Alloc(delHandle);
IntPtr ip = Marshal::GetFunctionPointerForDelegate(delHandle);
ANSWERCB callbackPtr = static_cast<ANSWERCB>(ip.ToPointer());
nativePtr->setCallback(callbackPtr);
}
~ManagedClass() {
delete nativePtr;
nativePtr = __nullptr;
gch.Free();
}
private:
void changeAndPrintInt() // callback function
{
Console::WriteLine(++i);
}
};
int main(array<System::String ^> ^args)
{
ManagedClass mc(1);
return 0;
}

How to force the order of Installer Execution

I have been building a new .NET solu­tion with Cas­tle per­form­ing my DI.
Its now at the stage where i would like to con­trol the order in which my installers run. I have built indi­vid­ual classes which implement IWind­sorIn­staller to han­dle my core types — eg IRepos­i­tory, IMap­per and ISer­vice to name a few.
I see that its suggested i implement my own Installer­Fac­tory (guessing i just override Select) in this class.
Then use this new factory in my call to:
FromAssembly.InDirectory(new AssemblyFilter("bin loca­tion"));
My ques­tion — when over­rid­ing the save method — what is the best way to force the order of my installers.
I know its already solved but I couldn't find any example on how to actually implement the InstallerFactory so here's a solution if anyone is googling for it.
How to use:
[InstallerPriority(0)]
public class ImportantInstallerToRunFirst : IWindsorInstaller
{
public void Install(IWindsorContainer container, Castle.MicroKernel.SubSystems.Configuration.IConfigurationStore store)
{
// do registrations
}
}
Just add the InstallerPriority attribute with a priority to your "install-order-sensitive" classes. Installers will be sorted by ascending. Installers without priority will default to 100.
How to implement:
public class WindsorBootstrap : InstallerFactory
{
public override IEnumerable<Type> Select(IEnumerable<Type> installerTypes)
{
var retval = installerTypes.OrderBy(x => this.GetPriority(x));
return retval;
}
private int GetPriority(Type type)
{
var attribute = type.GetCustomAttributes(typeof(InstallerPriorityAttribute), false).FirstOrDefault() as InstallerPriorityAttribute;
return attribute != null ? attribute.Priority : InstallerPriorityAttribute.DefaultPriority;
}
}
[AttributeUsage(AttributeTargets.Class)]
public sealed class InstallerPriorityAttribute : Attribute
{
public const int DefaultPriority = 100;
public int Priority { get; private set; }
public InstallerPriorityAttribute(int priority)
{
this.Priority = priority;
}
}
When starting application, global.asax etc:
container.Install(FromAssembly.This(new WindsorBootstrap()));
You can call your installers in the order they need to be instantiated in Global.asax.cs or e.g. in a Bootstrapper class, which is called from Global.asax.cs.
IWindsorContainer container = new WindsorContainer()
.Install(
new LoggerInstaller() // No dependencies
, new PersistenceInstaller() // --""--
, new RepositoriesInstaller() // Depends on Persistence
, new ServicesInstaller() // Depends on Repositories
, new ControllersInstaller() // Depends on Services
);
They are instantiated in this order, and you can add a breakpoint after and check the container for "Potentially misconfigured components".
If there are any, check their Status->details, if not, it's the correct order.
This solution is quick and easy, the documentation mentions using a InstallerFactory Class for tighter control over your installers so if you have a ton of installers the other solution may fit better. (Using code as convention should not require tons of installers?)
http://docs.castleproject.org/Windsor.Installers.ashx#codeInstallerFactorycode_class_4
In the end i had to use InstallerFactory and implement the ordering rules as suggested previously by returning the IEnumerable<Type> with my specific order

Resources