CloudQueue GetMessage vs GetMessages - azure

I wonder what is the overhead of getting the messages one by one using the GetMessage vs GetMessages?
Should I always use GetMessages(32) and will it have any advantage over GetMessage()?

Assuming you have 32 messages in your queue and your intent is to get all messages in the queue, if you call GetMessage() you would need to make 32 calls to get all messages thus 32 API transactions where as if you call GetMessages(32) you would make just one call to get all messages thus just 1 transaction.
More than that, I think it depends on your application. For example, I have been playing with this functionality where I decided that my application's worker role (let's call it "consumer") instance can process 4 messages at a time. In that case, for me it was better to fetch 4 messages from the queue using GetMessages(4) and making sure that the 4 messages processed by my consumer instances are invisible to other callers. If I had made use of GetMessage(), then I would have to make this call 4 times and if I made use of GetMessages(32), then my consumer instance would just sit on those additional 28 messages and other consumer instances would not get a chance to work on those messages.

IMHO, Calling GetMessages makes sense based on your application. If by design it's more efficient for me to process messages in batches then I should get them in batches (small messages, low overhead to process one of them) but instead if it takes 1-5 minutes to process one message then you are better off doing GetMessage but having multiple worker roles doing the work.
So, it depends

Related

Control Azure Service Bus Queue Message Reception

We have a distributed architecture and there is a native system which needs to be called. The challenge is the capacity of the system which is not scalable and cannot take on more load of requests at same time. We have implemented Service Bus queues, where there is a Message handler listening to this queue and makes a call to the native system. The current challenge is whenever a message posted in the queue, the message handler is immediately processing the request. However, We wanted to have a scenario to only process two requests at a time. Pick the two, process it and then move on to the next two. Does Service Bus Queue provide inbuilt option to control this or should we only be able to do with custom logic?
var options = new MessageHandlerOptions()
{
MaxConcurrentCalls = 1,
AutoComplete = false
};
client.RegisterMessageHandler(
async (message, cancellationToken) =>
{
try
{
//Handler to process
await client.CompleteAsync(message.SystemProperties.LockToken);
}
catch
{
await client.AbandonAsync(message.SystemProperties.LockToken);
}
}, options);
Message Handler API is designed for concurrency. If you'd like to process two messages at any given point in time then the Handler API with maximum concurrency of two will be your answer. In case you need to process a batch of two messages at any given point in time, this API is not what you need. Rather, fall back to building your own message pump using a lower level API outlined in the answer provided by Mikolaj.
Careful with re-locking messages though. It's not a guaranteed operation as it's a client-side operation and if there's a communication network, currently, the broker will reset the lock and the message will be processed again by another competing consumer if you scale out. That is why scaling-out in your scenario is probably going to be a challenge.
Additional point is about lower level API of the MessageReceiver when it comes to receiving more than a single message - ReceiveAsync(n) does not guarantee n messages will be retrieved. If you absolutely have to have n messages, you'll need to loop to ensure there are n and no less.
And the last point about the management client and getting a queue message count - strongly suggest not to do that. The management client is not intended for frequent use at run-time. Rather, it's uses for occasional calls as these calls are very slow. Given you might end up with a single processing endpoint constrained to only two messages at a time (not even per second), these calls will add to the overall time to process.
From the top of my head I don't think anything like that is supported out of the box, so your best bet is to do it yourself.
I would suggest you look at the ReceiveAsync() method, which allows you to receive specific amount of messages (NOTE: I don't think it guarantees that if you specify that you want to retrieve 2 message it will always get you two. For instance, if there's just one message in the queue then it will probably return that one, even though you asked for two)
You could potentially use the ReceiveAsync() method in combination with PeekAsync() method where you can also provide a number of messages you want to peek. If the peeked number of messages is 2 than you can call ReceiveAsync() with better chances of getting desired two messages.
Another way would be to have a look at the ManagementClient and the GetQueueRuntimeInfoAsync() method of the queue, which will give you the information about the number of messages in the queue. With that info you could then call the ReceiveAsync() mentioned earlier.
However, be aware that if you have multiple receivers listening to the same queue then there's no guarantees that anything from above will work, as there's no way to determine if these messages were received by another process or not.
It might be that you will need to go with a more sophisticated way of handling this and receive one message, then keep it alive (renew lock etc.) until you get another message and then process them together.
I don't think I helped too much but maybe at least it will give you some ideas.

how to process hundreds of JMS message from 2 queues, response time of 1 second and 1 minute respectively

I have business requirement where I have to process messages in a certain priority say priority1 and priority2
We have decided to use 2 JMS queues where priority1 messages will be sent to priority1Queue and priority2 messages will be sent to priority2Queue.
Response time for priority1Queue messages is that the moment message is in Queue, I need to read, process and send the response back to say another queue in 1 second. This means I should immediately process these messages the moment they are in priority1Queue, and I will have hundreds of such messages coming in per second on priority1Queue so I will definitely need to have multiple concurrent consumers consuming messages on this queue so that they can be processed immediately when they are in the queue(consumed and processed within 1 second).
Response time for priority2Queue messages is that I need to read, process and send the response back to say another queue in 1 minute. So the response time of priority2 is lower to priority1 messages however I still need to respond back in a minute.
Can you suggest best possible approach for this so that I can concurrently read messages from both the queue and give higher priority to priority1 messages so that each priority1 message can be read and processed in 1 second.
Mainly how it can be read and fed to a processor so that the next message can be read and so on.
I need to write a java based component that does the reading and processing.
I also need to ensure this component is highly available and doesn't result in OutOfMemory, I will be having this component running across multiple JVMS and multiple application servers thus I can have multiple clusters running this Java component
First off, the requirement to process within 1 second is not going to be dependent on your messaging approach, but more about the actual processing of the message and the raw CPUs available. Picking up 100s of messages per second from a queue is child's play, the JMS provider is most likely not the issue. Depending on your deployment platform (Tomcat, Mule, JEE, whatever), there should be a way to have n listeners to scale up appropriately. Because the messages exist on the queue until you pick it up, doubtful you'll run out of memory. I've done these apps, processed many more messages without problems.
Second, number of strategies for prioritizing messages, not necessarily requiring different queues, using priorities. I'm leaning towards using message priorities and message filters, where one group of listeners take care of the highest priority messages and another listener filters off lower priority but makes sure it does enough to get them out within a minute.
You could also do something where a lower priority message gets rewritten back to the same queue with a higher priority, based on how close to 1 minute you are. I know that sounds wrong, but reading/writing from JMS has very little overhead (at least compared to do the equivalent, column-driven database transactions), but the listener for lower priority messages could just continually increase the priority until it has to be processed.
Or simpler, just have more listeners on the high priority queue/messages than the lower priority ones, and imbalance in number of processes for messages might be all it needs.
Lots of possibilities, time for a PoC.

Spring integration queue, any way to get current queue size?

We have scenario that lots of message from external system need to be processed async, current design is to have a job wake up every 5 mins to pull msg from external system, and then persist raw msg, and then send msg id to ExecutorChannel, so consumer(potentially many) can consume from channel.
The problem we are facing is how to deal with system crash while msgs in queue, somehow every time job wake up, we will need to look into our DB to find out if there is any raw msgs not in queue already.
The easiest way is to query current queue size and find out if there are more raw msg than msg in queue. So question I have is: is any API for ExecutorChannel to find out size of queue? or any other suggestion?
Thx
Jason
Spring Integration itself doesn't maintain a queue within an ExecutorChannel; the messages are executed by the underlying Executor.
If you are using a Spring ThreadPoolTaskExecutor which is dedicated to the channel, you could drill down to the channel's underlying ThreadPoolTaskExecutor's ThreadPoolExecutor, and get a handle to its BlockingQueue (getQueue()) and get it's count.
However, you'd have to add the active task count as well.
The total count would be approximate, though because the ThreadPoolExecutor has no atomic method to get a count of queued and active tasks.

does multiple Azure worker role polling same Queue causes Dead Lock or Poison message

Scenario:
if I've spin off multiple Worker roles or ONE Worker role with multiple threads, which polls the new messages in Azure Queue.
Could someone please confirm if the this the correct design approach? The reason I would like to have many worker roles is to speed up the PROCESSJOB. Our application should be near real time, i.e. as soon as there are messages we should get, apply complex business rules and commit to AZURE DB. We are expecting 11,000 message per 3min.
Thank you.
You may have as many queue-readers as you like. It's very common to scale out worker role instances, as they can all read from the same queue, giving you much greater work throughput.
When you read a queue message, it's marked "invisible" for a period of time, to prevent others from reading and doing the same work. The owner of the message must delete it before the time period expires, otherwise the message becomes visible again, and an exception will be thrown when the original reader attempts to delete it. This means your operations must be idempotent.
There's no direct poison-message handling, but it's easy to implement, as each message has a dequeue count. Just check it and remove poison messages after being read 3-4 times. You can also dynamically adjust the timeout period based on dequeue count, as maybe the processing fails due to too-short a time window.
Here's the MSDN documentation for DequeueCount.
EDIT: As far as processing 11,000 messages in 3 minutes: the scalability target for queues is 500 2,000 TPS, or up to 360,000 transactions in 3 minutes (far beyond the 11,000 message requirement you have). You can speed things up further by combining messages into a single queue message, as well as reading multiple messages at a time, which will also reduce your transaction count. You can also look at the ApproximateMessageCount property of a queue to see if your queue is backing up (and then scaling out to additional intstances to help consume queue items).

How to approach parallel processing of messages?

I am redesigning the messaging system for my app to use intel threading building blocks and am stumped trying to decide between two possible approaches.
Basically, I have a sequence of message objects and for each message type, a sequence of handlers. For each message object, I apply each handler registered for that message objects type.
The sequential version would be something like this (pseudocode):
for each message in message_sequence <- SEQUENTIAL
for each handler in (handler_table for message.type)
apply handler to message <- SEQUENTIAL
The first approach which I am considering processes the message objects in turn (sequentially) and applies the handlers concurrently.
Pros:
predictable ordering of messages (ie, we are guaranteed a FIFO processing order)
(potentially) lower latency of processing each message
Cons:
more processing resources available than handlers for a single message type (bad parallelization)
bad use of processor cache since message objects need to be copied for each handler to use
large overhead for small handlers
The pseudocode of this approach would be as follows:
for each message in message_sequence <- SEQUENTIAL
parallel_for each handler in (handler_table for message.type)
apply handler to message <- PARALLEL
The second approach is to process the messages in parallel and apply the handlers to each message sequentially.
Pros:
better use of processor cache (keeps the message object local to all handlers which will use it)
small handlers don't impose as much overhead (as long as there are other handlers also to be run)
more messages are expected than there are handlers, so the potential for parallelism is greater
Cons:
Unpredictable ordering - if message A is sent before message B, they may both be processed at the same time, or B may finish processing before all of A's handlers are finished (order is non-deterministic)
The pseudocode is as follows:
parallel_for each message in message_sequence <- PARALLEL
for each handler in (handler_table for message.type)
apply handler to message <- SEQUENTIAL
The second approach has more advantages than the first, but non-deterministic ordering is a big disadvantage..
Which approach would you choose and why? Are there any other approaches I should consider (besides the obvious third approach: parallel messages and parallel handlers, which has the disadvantages of both and no real redeeming factors as far as I can tell)?
Thanks!
EDIT:
I think what I'll do is use #2 by default, but allow a "conversation tag" to be attached to each message. Any messages with the same tag are ordered and handled sequentially in relation to its conversation. Handlers are passed the conversation tag alongside the message, so they may continue the conversation if they require. Something like this:
Conversation c = new_conversation()
send_message(a, c)
...
send_message(b, c)
...
send_message(x)
handler foo (msg, conv)
send_message(z, c)
...
register_handler(foo, a.type)
a is handled before b, which is handled before z. x can be handled in parallel to a, b and z. Once all messages in a conversation have been handled, the conversation is destroyed.
I'd say do something even different. Don't send work to the threads. Have the threads pull work when they finish previous work.
Maintain a fixed amount of worker threads (the optimal amount equal to the number of CPU cores in the system) and have each of them pull sequentially the next task to do from the global queue after it finishes with the previous one. Obviously, you would need to keep track of dependencies between messages to defer handling of a message until its dependencies are fully handled.
This could be done with very small synchronization overhead - possibly only with atomic operations, no heavy primitives like mutexes or semaphores.
Also, if you pass a message to each handler by reference, instead of making a copy, having the same message handled simultaneously by different handlers on different CPU cores can actually improve cache performance, as higher levels of cache (usually from L2 upwards) are often shared between CPU cores - so when one handler reads a message into the cache, the other handler on the second core will have this message already in L2. So think carefully - do you really need to copy the messages?
If possible I would go for number two with some tweaks. Do you really need every message tp be in order? I find that to be an unusual case. Some messages we just need to handle as soon as possible, and then some messages need be processed before another message but not before every message.
If there are some messages that have to be in order, then mark them someway. You can mark them with some conversation code that lets the processor know that it must be processed in order relative to the other messages in that conversation. Then you can process all conversation-less messages and one message from each conversation concurrently.
Give your design a good look and make sure that only messages that need to be in order are.
I Suppose it comes down to wether or not the order is important. If the order is unimportant you can go for method 2. If the order is important you go for method 1. Depending on what your application is supposed to do, you can still go for method 2, but use a sequence number so all the messages are processed in the correct order (unless of cause if it is the processing part you are trying to optimize).
The first method also has unpredictable ordering. The processing of message 1 on thread 1 could take very long, making it possible that message 2, 3 and 4 have long been processed
This would tip the balance to method 2
Edit:
I see what you mean.
However why in method 2 would you do the handlers sequentially. In method 1 the ordering doesn't matter and you're fine with that.
E.g. Method 3: both handle the messages and the handlers in parallel.
Of course, here also, the ordering is unguaranteed.
Given that there is some result of the handlers, you might just store the results in an ordered list, this way restoring ordering eventually.

Resources