Should lookup values be modeled as aggregate roots? - domain-driven-design

As part of my domain model, lets say I have a WorkItem object. The WorkItem object has several relationships to lookup values such as:
WorkItemType:
UserStory
Bug
Enhancement
Priority:
High
Medium
Low
And there could possibly be more, such as Status, Severity, etc...
DDD states that if something exists within an aggregate root that you shouldn't attempt to access it outside of the aggregate root. So if I want to be able to add new WorkItemTypes like Task, or new Priorities like Critical, do those lookup values need to be aggregate roots with their own repositories? This seems a little overkill especially if they are only a key value pair. How should I allow a user to modify these values and still comply with the aggregate root encapsulation rule?

While the repository pattern as described in the blue book does emphasize its use being exclusive to aggregates, it does leave room open for exceptions. To quote the book:
Although most queries return an object or a collection of objects, it
also fits within the concept to return some types of summary
calculations, such as an object count, or a sum of a numerical
attribute that was intended by the model to be tallied.
(pg. 152)
This states that a repository can be used to return summary information, which is not an aggregate. This idea extends to using a repository to look up value objects, just as your use case requires.
Another thing to consider is the read-model pattern which essentially allows for a query-only type of repository which effectively decouples the behavior-rich domain model from query concerns.

Landon, I think that the only way is to make those value pairs aggregate roots. I know that is might look overkill, but that's DDD braking things into small components.
The reasons why I think using a repository is the right way are:
A user needs to be able to add those value pairs independently of a Work Item.
The value pairs don't have a local, unique identity
Remember that DDD is just a set of guidelines, not hard truths. If you think that this is overkill, you might want to create a lookup that returns the pairs as value objects. This might work out specially if you don't have a feature to add value pairs in the application, but rather through the database.
As a side note, good question! There are quite a few blog posts about this situations... But not all agree on the best way to do this.

Not everything should be modeled using DDD. The complexity of managing the reference data most likely wouldn't justify creating aggregate roots. A common solution would be to use CRUD to manage reference data, and have a Domain Service to interface with that data from the domain.

Do these lookups have ID's ? If not, you could consider making them Value Objects...

Related

DDD: Domain Objects Structure

I'm new to DDD and I want to clearly understand each domain object structure and role:
Aggregate Root:
1.1. The only contact point the client can interact with the domain objects, the client should not be able to modify or create new Entities or value objects whiteout the aggregate root? (Yes/No)
1.2. Can an aggregate root contain only value objects ? for example User root, it contain only address, phone, things which are value objects as far as I understand. So is it a sign of bad design when your aggregate root contain only value objects? shall it contain only entities and via entities interact with value objects?
Entities: Shall the entities contain only value objects? or it can also contain other entities? can you give me a simple example please ?
Value Objects: shall I go ahead and encapsulate every primitive type in an value object? I can go deep and make every primitive type as an value object, for example: PhoneNumber can be a string or an value object which contains country code, number. the same thing can be applied to all other primitive type value such as name, email. So where to draw the line ? where to say "Ok I'm going to deep", or going deep is the right way of doing DDD?
Factories: Do I really need them? I can go ahead and write an static method within the domain object which knows more precisely how to construct it, am I doing wrong ?
Sorry for the long questions, but I'm feeling little lost despite of continues reading, if you can help me I would be glad.
I'll try to answer all your questions:
1.1. The only contact point the client can interact with the domain objects, the client should not be able to modify or create new Entities or value objects whiteout the aggregate root? (Yes/No)
Entities live within ARs and allowing the client to create them would violate encapsulation, so for entities you are correct, ARs create their own entities which don't get exposed to the outside (copies/immutable views could be).
On the other hand, value objects are generally immutable and therefore there's no harm in having them supplied to the AR as data inputs.
In general all modifications needs to go through the AR so that the AR is aware of the modification. In special situations the AR could detect modifications within it's cluster by listening to events raised by internal entities when it's impractical to go through the root.
1.2. Can an aggregate root contain only value objects ? for example User root, it contain only address, phone, things which are value objects as far as I understand. So is it a sign of bad design when your aggregate root contain only value objects? shall it contain only entities and via entities interact with value objects?
Favor value objects as much as you can. It's not unusual for all parts of an AR being modeled as values. However, there's no limitation or law stating whether or not an AR should have only values or entities, use the composition that's fit to your use case.
Entities: Shall the entities contain only value objects? or it can also contain other entities? can you give me a simple example please ?
Same answer as above, no limitation nor law.
Value Objects: shall I go ahead and encapsulate every primitive type in an value object? I can go deep and make every primitive type as an value object, for example: PhoneNumber can be a string or an value object which contains country code, number. the same thing can be applied to all other primitive type value such as name, email. So where to draw the line ? where to say "Ok I'm going to deep", or going deep is the right way of doing DDD?
Primitive obsession is worst than value object obsession in my experience. The cost of wrapping a value is quite low in general, so when in doubt I'd model an explicit type. This could save you a lot of refactoring down the road.
Factories: Do I really need them? I can go ahead and write an static method within the domain object which knows more precisely how to construct it, am I doing wrong ?
Static factory methods on ARs are quite common as a mean to be more expressive and follow the UL more closely. For instance, I just modeled as use case today where we had to "start a group audit". Implemented a GroupAudit.start static factory method.
Factory methods on ARs for other ARs are also quite common, such as var post = forum.post(author, content) for instance, where Post is a seperate AR than Forum.
When the process requires some complex collaborators then you may consider a standalone factory though since you may not want clients to know how to provide and setup those collaborators.
I'm new to DDD and I want to clearly understand each domain object structure and role
Your best starting point is "the blue book" (Evans, 2003).
For this question, the two important chapters to review are chapter 5 ("A model expressed in software") and chapter 6 ("the life cycle of a domain object").
ENTITIES and VALUE OBJECTS are two patterns described in chapter 5, which is to say that they are patterns that commonly arise when we are modeling a domain. The TL;DR version: ENTITIES are used to represent relationships in the domain that change over time. VALUE OBJECTS are domain specific data structures.
AGGREGATES and FACTORIES are patterns described in chapter 6, which is to say that they are patterns that commonly arise when we are trying to manage the life cycle of the domain object. It's common that modifications to domain entities may be distributed across multiple sessions, so we need to think about how we store information in the past and reload that information in the future.
The only contact point the client can interact with the domain objects, the client should not be able to modify or create new Entities or value objects whiteout the aggregate root?
Gray area. "Creation patterns are weird." The theory is that you always copy information into the domain model via an aggregate root. But when the aggregate root you need doesn't exist yet, then what? There are a number of different patterns that people use here to create the new root entity from nothing.
That said - we don't expect the application to be directly coupled to the internal design of the aggregate. This is standard "best practice" OO, with the application code coupled to the model's interface without being coupled to the model's implementation/data structure.
Can an aggregate root contain only value objects ?
The definition of the root entity in the aggregate may include references to other entities in the same aggregate. Evans explicitly refers to "entities other than the root"; in order to share information with an entity other than the root, there must be some way to traverse references from the root to these non-root entities.
Shall the entities contain only value objects?
The definition of an entity may include references to other entities (including the root entity) in the same aggregate.
shall I go ahead and encapsulate every primitive type in an value object?
"It depends" - in a language like java, value objects are an affordance that make it easy for the compiler to give you early feed back about certain kinds of mistakes.
This is especially true if you have validation concerns. We'd like to validate (or parse) information once, rather than repeating the same check every where (duplication), and having validated vs unvalidated data be detectably different reduces the risk that unvalidated data leaks into code paths where it is not handled correctly.
Having a value object also reduces the number of places that need to change if you decide the underlying data structure needs improvement, and the value object gives you an easily guessed place to put functions/methods relating to that value.
Factories: Do I really need them?
Yes, and...
I can go ahead and write an static method within the domain object
... that's fine. Basic idea: if creating a domain object from so sufficient set of information is complicated, we want that complexity in one place, which can be invoked where we need it. That doesn't necessarily mean we need a NOUN. A function is fine.
And, of course, if your domain objects are not complicated, then "just" use the objects constructor/initializer.

What is an Aggregate Root?

No, it is not a duplication question.
I have red many sources on the subject, but still I feel like I don't fully understand it.
This is the information I have so far (from multiple sources, be it articles, videos, etc...) about what is an Aggregate and Aggregate Root:
Aggregate is a collection of multiple Value Objects\Entity references and rules.
An Aggregate is always a command model (meant to change business state).
An Aggregate represents a single unit of (database - because essentialy the changes will be persisted) work, meaning it has to be consistent.
The Aggregate Root is the interface to the external world.
An Aggregate Root must have a globally unique identifier within the system
DDD suggests to have a Repository per Aggregate Root
A simple object from an aggregate can't be changed without its AR(Aggregate Root) knowing it
So with all that in mind, lets get to the part where I get confused:
in this site it says
The Aggregate Root is the interface to the external world. All interaction with an Aggregate is via the Aggregate Root. As such, an Aggregate Root MUST have a globally unique identifier within the system. Other Entites that are present in the Aggregate but are not Aggregate Roots require only a locally unique identifier, that is, an Id that is unique within the Aggregate.
But then, in this example I can see that an Aggregate Root is implemented by a static class called Transfer that acts as an Aggregate and a static function inside called TransferedRegistered that acts as an AR.
So the questions are:
How can it be that the function is an AR, if there must be a globaly unique identifier to it, and there isn't, reason being that its a function. what does have a globaly unique identifier is the Domain Event that this function produces.
Following question - How does an Aggregate Root looks like in code? is it the event? is it the entity that is returned? is it the function of the Aggregate class itself?
In the case that the Domain Event that the function returns is the AR (As stated that it has to have that globaly unique identifier), then how can we interact with this Aggregate? the first article clearly stated that all interaction with an Aggregate is by the AR, if the AR is an event, then we can do nothing but react on it.
Is it right to say that the aggregate has two main jobs:
Apply the needed changes based on the input it received and rules it knows
Return the needed data to be persisted from AR and/or need to be raised in a Domain Event from the AR
Please correct me on any of the bullet points in the beginning if some/all of them are wrong is some way or another and feel free to add more of them if I have missed any!
Thanks for clarifying things out!
I feel like I don't fully understand it.
That's not your fault. The literature sucks.
As best I can tell, the core ideas of implementing solutions using domain driven design came out of the world of Java circa 2003. So the patterns described by Evans in chapters 5 and six of the blue book were understood to be object oriented (in the Java sense) domain modeling done right.
Chapter 6, which discusses the aggregate pattern, is specifically about life cycle management; how do you create new entities in the domain model, how does the application find the right entity to interact with, and so on.
And so we have Factories, that allow you to create instances of domain entities, and Repositories, that provide an abstraction for retrieving a reference to a domain entity.
But there's a third riddle, which is this: what happens when you have some rule in your domain that requires synchronization between two entities in the domain? If you allow applications to talk to the entities in an uncoordinated fashion, then you may end up with inconsistencies in the data.
So the aggregate pattern is an answer to that; we organize the coordinated entities into graphs. With respect to change (and storage), the graph of entities becomes a single unit that the application is allowed to interact with.
The notion of the aggregate root is that the interface between the application and the graph should be one of the members of the graph. So the application shares information with the root entity, and then the root entity shares that information with the other members of the aggregate.
The aggregate root, being the entry point into the aggregate, plays the role of a coarse grained lock, ensuring that all of the changes to the aggregate members happen together.
It's not entirely wrong to think of this as a form of encapsulation -- to the application, the aggregate looks like a single entity (the root), with the rest of the complexity of the aggregate being hidden from view.
Now, over the past 15 years, there's been some semantic drift; people trying to adapt the pattern in ways that it better fits their problems, or better fits their preferred designs. So you have to exercise some care in designing how to translate the labels that they are using.
In simple terms an aggregate root (AR) is an entity that has a life-cycle of its own. To me this is the most important point. One AR cannot contain another AR but can reference it by Id or some value object (VO) containing at least the Id of the referenced AR. I tend to prefer to have an AR contain only other VOs instead of entities (YMMV). To this end the AR is responsible for consistency and variants w.r.t. the AR. Each VO can have its own invariants such as an EMailAddress requiring a valid e-mail format. Even if one were to call contained classes entities I will call that semantics since one could get the same thing done with a VO. A repository is responsible for AR persistence.
The example implementation you linked to is not something I would do or recommend. I followed some of the comments and I too, as one commenter alluded to, would rather use a domain service to perform something like a Transfer between two accounts. The registration of the transfer is not something that may necessarily be permitted and, as such, the domain service would be required to ensure the validity of the transfer. In fact, the registration of a transfer request would probably be a Journal in an accounting sense as that is my experience. Once the journal is approved it may attempt the actual transfer.
At some point in my DDD journey I thought that there has to be something wrong since it shouldn't be so difficult to understand aggregates. There are many opinions and interpretations w.r.t. to DDD and aggregates which is why it can get confusing. The other aspect is, in IMHO, that there is a fair amount of design involved that requires some creativity and which is based on an understanding of the domain itself. Creativity cannot be taught and design falls into the realm of tacit knowledge. The popular example of tacit knowledge is learning to ride a bike. Now, we can read all we want about how to ride a bike and it may or may not help much. Once we are on the bike and we teach ourselves to balance then we can make progress. Then there are people who end up doing absolutely crazy things on a bike and even if I read how to I don't think that I'll try :)
Keep practicing and modelling until it starts to make sense or until you feel comfortable with the model. If I recall correctly Eric Evans mentions in the Blue Book that it may take a couple of designs to get the model closer to what we need.
Keep in mind that Mike Mogosanu is using a event sourcing approach but in any case (without ES) his approach is very good to avoid unwanted artifacts in mainstream OOP languages.
How can it be that the function is an AR, if there must be a globaly unique identifier to it, and there isn't, reason being that
its a function. what does have a globaly unique identifier is the
Domain Event that this function produces.
TransferNumber acts as natural unique ID; there is also a GUID to avoid the need a full Value Object in some cases.
There is no unique ID state in the computer memory because it is an argument but think about it; why you want a globaly unique ID? It is just to locate the root element and its (non unique ID) childrens for persistence purposes (find, modify or delete it).
Order A has 2 order lines (1 and 2) while Order B has 4 order lines (1,2,3,4); the unique identifier of order lines is a composition of its ID and the Order ID: A1, B3, etc. It is just like relational schemas in relational databases.
So you need that ID just for persistence and the element that goes to persistence is a domain event expressing the changes; all the changes needed to keep consistency, so if you persist the domain event using the global unique ID to find in persistence what you have to modify the system will be in a consistent state.
You could do
var newTransfer = New Transfer(TransferNumber); //newTransfer is now an AG with a global unique ID
var changes = t.RegisterTransfer(Debit debit, Credit credit)
persistence.applyChanges(changes);
but what is the point of instantiate a object to create state in the computer memory if you are not going to do more than one thing with this object? It is pointless and most of OOP detractors use this kind of bad OOP design to criticize OOP and lean to functional programming.
Following question - How does an Aggregate Root looks like in code? is it the event? is it the entity that is returned? is it the function
of the Aggregate class itself?
It is the function itself. You can read in the post:
AR is a role , and the function is the implementation.
An Aggregate represents a single unit of work, meaning it has to be consistent. You can see how the function honors this. It is a single unit of work that keeps the system in a consistent state.
In the case that the Domain Event that the function returns is the AR (As stated that it has to have that globaly unique identifier),
then how can we interact with this Aggregate? the first article
clearly stated that all interaction with an Aggregate is by the AR, if
the AR is an event, then we can do nothing but react on it.
Answered above because the domain event is not the AR.
4 Is it right to say that the aggregate has two main jobs: Apply the
needed changes based on the input it received and rules it knows
Return the needed data to be persisted from AR and/or need to be
raised in a Domain Event from the AR
Yes; again, you can see how the static function honors this.
You could try to contat Mike Mogosanu. I am sure he could explain his approach better than me.

Association between aggregates, how to decide between holding reference to the object or only to its identity

For exemple, giving a performance having multiple performers...
First option:
Performance (1) ---> (*) Performer
Second option:
Performance
+PerformerIds[]
1st option Pros:
Easier access for query purpose (lets say I don't want to use CQRS)
When we look at the domain model it seems easier to understand, the relation between Performance and Performer is more visible
1st option Cons:
A Performance object is heavier to load (could possibly be fixed with lazy loading)
More coupling
2nd option pros and cons are obviously the opposite of the first option, harder access to performers from the performance, model diagram harder to understand, lighter to load and less coupling.
I kind of like the first option, because, there is no way a Performance object will ever use the Performer object. That relation is more like a data relation / query model.
But it also makes the domain model diagram less clear, in my opinion, so i'm not sure if I should which solution to use.
Could my problem here be that I'm trying to use the same class diagrams for domain experts and for developers ? and/or modeling for query primarily rather than for updating ?
how to decide between holding reference to the object or only to its identity
Holding a reference to an identity of related Aggregate Roots (ARs) makes their boundaries explicit.
Sure each AR still holds references to all its Entities but it becomes very explicit in your domain model whether you reference Aggregate Roots or Entities.
If you hold references to related Aggregate Roots (ARs) it's very easy to cross boundaries between them.
It can be very easy to change few aggregates at the same time, especially if you use ORM or have Unit of Work implemented. So your aggregate roots are not transaction boundaries any more.
If you hold only identifiers to related Aggregate Roots (ARs), in order to access a related AR you have to load it from repository first. It's a trade off. It becomes very explicit when you cross a boundary of one aggregate and query another one.
What I don't like of it is that when you look at a class diagram, all you see is separate aggregates that does not have any association between them, that does not look very useful to show the domain concepts that are related.
Your domain model is a "model" and it's up to you to make design decisions.
If all your Aggregate Roots are small, and you use an ORM that does a lot of magic for free (NOTE: There is always a price), and a value of seeing references on a class diagramme is bigger than value of seeing boundaries then try with holding a reference to related ARs, even if your code doesn't really need it.
And then evaluate your model over a time.

DDD: How to handle large collections

I'm currently designing a backend for a social networking-related application in REST. I'm very intrigued by the DDD principle. Now let's assume I have a User object who has a Collection of Friends. These can be thousands if the app and the user would become very successful. Every Friend would have some properties as well, it is basically a User.
Looking at the DDD Cargo application example, the fully expanded Cargo-object is stored and retrieved from the CargoRepository from time to time. WOW, if there is a list in the aggregate-root, over time this would trigger a OOM eventually. This is why there is pagination, and lazy-loading if you approach the problem from a data-centric point of view. But how could you cope with these large collections in a persistence-unaware DDD?
As #JefClaes mentioned in the comments: You need to determine whether your User AR indeed requires a collection of Friends.
Ownership does not necessarily imply that a collection is necessary.
Take an Order / OrderLine example. An OrderLine has no meaning without being part of an Order. However, the Customer that an Order belongs to does not have a collection of Orders. It may, possibly, have a collection of ActiveOrders if a customer is limited to a maximum number (or amount) iro active orders. Keeping a collection of historical orders would be unnecessary.
I suspect the large collection problem is not limited to DDD. If one were to receive an Order with many thousands of lines there may be design trade-offs but the order may much more likely be simply split into smaller orders.
In your case I would assert that the inclusion / exclusion of a Friend has very little to do with the consistency of the User AR.
Something to keep in mind is that as soon as you start using you domain model for querying your start running into weird sorts of problems. So always try to think in terms of some read/query model with a simple query interface that can access your data directly without using your domain model. This may simplify things.
So perhaps a Relationship AR may assist in this regard.
If some paging or optimization techniques are the part of your domain, it's nothing wrong to design domain classes with this ability.
Some solutions I've thought about
If User is aggregate root, you can populate your UserRepository with method GetUserWithFriends(int userId, int firstFriendNo, int lastFriendNo) encapsulating specific user object construction. In same way you can also populate user model with some counters and etc.
On the other side, it is possible to implement lazy loading for User instance's _friends field. Thus, User instance can itself decide which "part" of friends list to load.
Finally, you can use UserRepository to get all friends of certain user with respect to paging or other filtering conditions. It doesn't violate any DDD principles.
DDD is too big to talk that it's not for CRUD. Programming in a DDD way you should always take into account some technical limitations and adapt your domain to satisfy them.
Do not prematurely optimize. If you are afraid of large stress, then you have to benchmark your application and perform stress tests.
You need to have a table like so:
friends
id, user_id1, user_id2
to handle the n-m relation. Index your fields there.
Also, you need to be aware whether friends if symmetrical. If so, then you need a single row for two people if they are friends. If not, then you might have one row, showing that a user is friends with the other user. If the other person considers the first a friend as well, you need another row.
Lazy-loading can be achieved by hidden (AJAX) requests so users will have the impression that it is faster than it really is. However, I would not worry about such problems for now, as later you can migrate the content of the tables to a new structure which is unkown now due to the infinite possible evolutions of your project.
Your aggregate root can have a collection of different objects that will only contain a small subset of the information, as reference to the actual business objects. Then when needed, items can be used to fetch the entire information from the underlying repository.

How should I enforce relationships and constraints between aggregate roots?

I have a couple questions regarding the relationship between references between two aggregate roots in a DDD model. Refer to the typical Customer/Order model diagrammed below.
First, should references between the actual object implementation of aggregates always be done through ID values and not object references? For example if I want details on the customer of an Order I would need to take the CustomerId and pass it to a ICustomerRepository to get a Customer rather then setting up the Order object to return a Customer directly correct? I'm confused because returning a Customer directly seems like it would make writing code against the model easier, and is not much harder to setup if I am using an ORM like NHibernate. Yet I'm fairly certain this would be violating the boundaries between aggregate roots/repositories.
Second, where and how should a cascade on delete relationship be enforced for two aggregate roots? For example say I want all the associated orders to be deleted when a customer is deleted. The ICustomerRepository.DeleteCustomer() method should not be referencing the IOrderRepostiory should it? That seems like that would be breaking the boundaries between the aggregates/repositories? Should I instead have a CustomerManagment service which handles deleting Customers and their associated Orders which would references both a IOrderRepository and ICustomerRepository? In that case how can I be sure that people know to use the Service and not the repository to delete Customers. Is that just down to educating them on how to use the model correctly?
First, should references between aggregates always be done through ID values and not actual object references?
Not really - though some would make that change for performance reasons.
For example if I want details on the customer of an Order I would need to take the CustomerId and pass it to a ICustomerRepository to get a Customer rather then setting up the Order object to return a Customer directly correct?
Generally, you'd model 1 side of the relationship (eg., Customer.Orders or Order.Customer) for traversal. The other can be fetched from the appropriate Repository (eg., CustomerRepository.GetCustomerFor(Order) or OrderRepository.GetOrdersFor(Customer)).
Wouldn't that mean that the OrderRepository would have to know something about how to create a Customer? Wouldn't that be beyond what OrderRepository should be responsible for...
The OrderRepository would know how to use an ICustomerRepository.FindById(int). You can inject the ICustomerRepository. Some may be uncomfortable with that, and choose to put it into a service layer - but I think that's overkill. There's no particular reason repositories can't know about and use each other.
I'm confused because returning a Customer directly seems like it would make writing code against the model easier, and is not much harder to setup if I am using an ORM like NHibernate. Yet I'm fairly certain this would be violating the boundaries between aggregate roots/repositories.
Aggregate roots are allowed to hold references to other aggregate roots. In fact, anything is allowed to hold a reference to an aggregate root. An aggregate root cannot hold a reference to a non-aggregate root entity that doesn't belong to it, though.
Eg., Customer cannot hold a reference to OrderLines - since OrderLines properly belongs as an entity on the Order aggregate root.
Second, where and how should a cascade on delete relationship be enforced for two aggregate roots?
If (and I stress if, because it's a peculiar requirement) that's actually a use case, it's an indication that Customer should be your sole aggregate root. In most real-world systems, however, we wouldn't actually delete a Customer that has associated Orders - we may deactivate them, move their Orders to a merged Customer, etc. - but not out and out delete the Orders.
That being said, while I don't think it's pure-DDD, most folks will allow some leniency in following a unit of work pattern where you delete the Orders and then the Customer (which would fail if Orders still existed). You could even have the CustomerRepository do the work, if you like (though I'd prefer to make it more explicit myself). It's also acceptable to allow the orphaned Orders to be cleaned up later (or not). The use case makes all the difference here.
Should I instead have a CustomerManagment service which handles deleting Customers and their associated Orders which would references both a IOrderRepository and ICustomerRepository? In that case how can I be sure that people know to use the Service and not the repository to delete Customers. Is that just down to educating them on how to use the model correctly?
I probably wouldn't go a service route for something so intimately tied to the repository. As for how to make sure a service is used...you just don't put a public Delete on the CustomerRepository. Or, you throw an error if deleting a Customer would leave orphaned Orders.
Another option would be to have a ValueObject describing the association between the Order and the Customer ARs, VO which will contain the CustomerId and additional information you might need - name,address etc (something like ClientInfo or CustomerData).
This has several advantages:
Your ARs are decoupled - and now can be partitioned, stored as event streams etc.
In the Order ARs you usually need to keep the information you had about the customer at the time of the order creation and not reflect on it any future changes made to the customer.
In almost all the cases the information in the value object will be enough to perform the read operations ( display customer info with the order ).
To handle the Deletion/deactivation of a Customer you have the freedom to chose any behavior you like. You can use DomainEvents and publish a CustomerDeleted event for which you can have a handler that moves the Orders to an archive, or deletes them or whatever you need. You can also perform more than one operation on that event.
If for whatever reason DomainEvents are not your choice you can have the Delete operation implemented as a service operation and not as a repository operation and use a UOW to perform the operations on both ARs.
I have seen a lot of problems like this when trying to do DDD and i think that the source of the problems is that developers/modelers have a tendency to think in DB terms. You ( we :) ) have a natural tendency to remove redundancy and normalize the domain model. Once you get over it and allow your model to evolve and implicate the domain expert(s) in it's evolution you will see that it's not that complicated and it's quite natural.
UPDATE: and a similar VO - OrderInfo can be placed inside the Customer AR if needed, with only the needed information - order total, order items count etc.

Resources