I write a code to print out strings: "Thread 0" to "Thread 4" using pthread.
Here is my code:
Case 1:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
void *print_message_function(void* parameter) {
long *i = (long *)parameter;
printf("Thread %ld\n", *i);
pthread_exit(0);
}
int main(int argc, char *argv[]) {
pthread_t threads[5];
long i = 0;
for (i = 0; i < 5; i++) {
pthread_create(&threads[i], 0, print_message_function, (void *)&i);
}
pthread_exit(NULL);
}
But the result is:
Thread 2
Thread 3
Thread 3
Thread 4
Thread 5
or:
Thread 0
Thread 0
Thread 0
Thread 0
Thread 0
It changed when I run it again. So I don't know why the values I passed are (2 to 5) or all (0) or ..... (many cases). I think my arguments I passed is from 0 to 4.
Case 2:
When I change to the new code:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
void *print_message_function(void *parameter);
int main(int argc, char *argv[]) {
pthread_t threads[5];
int i = 0;
for (i = 0; i < 5; i++) {
char *msg = (char*)malloc(sizeof(char));
sprintf(msg, "Thread %d", i);
pthread_create(&threads[i], 0, print_message_function, (void *)msg);
}
}
void *print_message_function(void *parameter) {
printf("%s\n", (char *)parameter);
}
The result is:
Thread 1
Thread 0
Thread 3
Thread 2
Thread 4
Thread 4
It means the loop run 6 times! Why?
Change Case 1 to this:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
void *print_message_function(void* parameter) {
long i = (long)parameter; // <<<
printf("Thread %ld\n", i); // <<<
pthread_exit(0);
}
int main(int argc, char *argv[]) {
pthread_t threads[5];
long i = 0;
for (i = 0; i < 5; i++) {
pthread_create(&threads[i], 0, print_message_function, (void *)i); // <<<
}
pthread_exit(NULL);
}
The reason that you were seeing inconsistent results before was because you were passing a pointer to each thread where each pointer was pointing at the same local variable, which you were then modifying.
In Case 2 you are mallocing only a single char and then trying to write a string to it. It should be fairly easy to fix.
Your case 2 approach is valid, however you need to fix the malloc part to allocate enough bytes. Change it to
char *msg = (char*)malloc(sizeof(char) * (strlen("Thread ") + 10));
// assuming i will take at most 9-digits (unlikely case)
For your case 1, you are passing address of i. But the value of i is changing thread function will get whatever value is there at that location when it tries to print. Also note that address of i may not be valid by the time thread function executes as its allocated on stack and will go away when main function returns.
Related
I have some very simple code which is supposed to test a multi-threaded logger by starting 10 threads at the same time which will all write to the logger at once.
I expect to see all 10 messages, not in any order; However, I randomly get 5,6,7,8,9, and sometimes 10 output messages.
Here is the code:
//*.cxx
#include <iostream>
#include <mutex>
#include <shared_mutex> // requires c++14
#include <string>
#include <thread>
#include <vector>
namespace {
std::mutex g_msgLock;
std::shared_timed_mutex g_testingLock;
}
void info(const char * msg) {
std::unique_lock<std::mutex> lock(g_msgLock);
std::cout << msg << '\n'; // don't flush
}
int main(int argc, char** argv) {
info("Start message..");
std::vector<std::thread> threads;
unsigned int threadCount = 10;
threads.reserve(threadCount);
{ // Scope for locking all threads
std::lock_guard<std::shared_timed_mutex> lockAllThreads(g_testingLock); // RAII (scoped) lock
for (unsigned int i = 0; i < threadCount; i++) {
// Here we start the threads using lambdas
threads.push_back(std::thread([&, i](){
// Here we block and wait on lockAllThreads
std::shared_lock<std::shared_timed_mutex> threadLock(g_testingLock);
std::string msg = std::string("THREADED_TEST_INFO_MESSAGE: ") + std::to_string(i);
info(msg.c_str());
}));
}
} // End of scope, lock is released, all threads continue now
for(auto& thread : threads){
thread.join();
}
}
The output is generally something of the form:
Start message..
THREADED_TEST_INFO_MESSAGE: 9
THREADED_TEST_INFO_MESSAGE: 5
THREADED_TEST_INFO_MESSAGE: 3
THREADED_TEST_INFO_MESSAGE: 1
THREADED_TEST_INFO_MESSAGE: 4
THREADED_TEST_INFO_MESSAGE: 0
THREADED_TEST_INFO_MESSAGE: 8
THREADED_TEST_INFO_MESSAGE: 7
Notice that there are only 8 outputs for this run.
Interestingly enough, this problem was associated with my build system which was dropping messages. The executable is always producing the outputs as expected.
I created a simple program that shows the use of mutex lock. Here is the code...
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#define NUM_THREAD 2
pthread_mutex_t mutex;
int call_time;
void *makeCall(void *param)
{
call_time = 10;
pthread_mutex_lock(&mutex);
printf("Hi I'm thread #%u making a call\n", (unsigned int) pthread_self());
do{
printf("%d\n", call_time);
call_time--;
sleep(1);
}
while(call_time > 0);
pthread_mutex_unlock(&mutex);
return 0;
}
int main()
{
int i;
pthread_t thread[NUM_THREAD];
//init mutex
pthread_mutex_init(&mutex, NULL);
//create thread
for(i = 0; i < NUM_THREAD; i++)
pthread_create(&thread[i], NULL, makeCall, NULL);
//join thread
for(i = 0; i < NUM_THREAD; i++)
pthread_join(thread[i], NULL);
pthread_mutex_destroy(&mutex);
return 0;
}
The output is...
Hi I'm thread #3404384000 making a call
10
10
9
8
7
6
5
4
3
2
1
Hi I'm thread #3412776704 making a call
0
However, if I modify the function makeCall and transfer the variable call_time inside the mutex locks...
pthread_mutex_lock(&mutex);
call_time = 10;
/*
*
*
*
*/
pthread_mutex_unlock(&mutex);
The program now gives me the correct output where each of the thread counts down from 10 to 0. I don't understand the difference it makes transferring the variable call_time inside the locks. I hope someone can make me understand this behavior of my program. Cheers!
call_time is a shared variable that is accessed from 2 threads and so must be protected. What is happening is that the first thread starts, sets call_time to 10 and prints the first round.Then the second thread starts, resets call_time back to 10 and waits for the mutex. The first thread now comes back and keeps running with call_time reset to 10. After it is done and frees the mutex, the second thread can now run. call_time is now 0 since the first thread left it at 0, and so it just prints the last round.
Try this program, I think it will demonstrate threads better:
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#define NUM_THREAD 2
pthread_mutex_t mutex;
int call_time;
void *makeCall(void *param)
{
int temp;
do{
pthread_mutex_lock(&mutex);
printf("Hi I'm thread #%u making a call\n", (unsigned int) pthread_self());
printf("%d\n", call_time);
temp = call_time--;
pthread_mutex_unlock(&mutex);
//sleep(1); //try with and without this line and see the difference.
}
while(temp > 0);
return 0;
}
int main()
{
int i;
call_time = 100;
pthread_t thread[NUM_THREAD];
//init mutex
pthread_mutex_init(&mutex, NULL);
//create thread
for(i = 0; i < NUM_THREAD; i++)
pthread_create(&thread[i], NULL, makeCall, NULL);
//join thread
for(i = 0; i < NUM_THREAD; i++)
pthread_join(thread[i], NULL);
pthread_mutex_destroy(&mutex);
return 0;
}
How can I modify the source code in the func( ) so that the address to which the program returns after executing func () is changed in such a manner that the instruction printf("first print\n”) is skipped. Use the pointer *ret defined in func() to modify the return address appropriately in order to achieve this.
Here is the code:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
void func(char *str)
{
char buffer[24];
int *ret;
strcpy(buffer,str);
}
int main(int argc, char **argv)
{
if (argc < 2)
{
printf("One argument needed.\n");
exit(0);
}
int x;
x = 0;
func(argv[1]);
x = 1;
printf("first print\n");printf("second print\n");
}
As sherrellbc noted, a program's exploits are usually written without modifying its source code. But if you want, inserting these two lines into func() may do:
ret = (int *)&str; // point behind saved return address
ret[-1] += 12; // or however many code bytes are to be skipped
#include <pthread.h>
#ifndef __linux__
#include <windows.h>// to include the windows.h library//
#endif
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 5
#include <sys/timeb.h>
void *PrintHello(void *threadid)
{
srand(time(NULL));
long tid,a;
tid = (long)threadid;
a=rand()%5;
printf("Hello World! It's me, thread #%ld!%ld\n", tid,a);
pthread_exit(NULL);
}
int main (int argc, char *argv[])
{
pthread_t threads[NUM_THREADS];
int rc;
long t,a;
srand(time(NULL));
for(t=0; t<NUM_THREADS; t++){
a=rand()%5;
printf("In main: creating thread %ld,%ld\n", t,a);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc){
printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);
}
}
/* Last thing that main() should do */
pthread_exit(NULL);
}
Alright I have this simple code and when I compile it inside the main() the random numbers
are different from one another but when i try to generate random numbers inside the threads, all the numbers that are produced are the same.
Try seeding from outside the threads. The problem is that you get the same seed for each thread
I tried to find a solution in order to keep the number of working threads constant under linux in C using pthreads, but I seem to be unable to fully understand what's wrong with the following code:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define MAX_JOBS 50
#define MAX_THREADS 5
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
int jobs = MAX_JOBS;
int worker = 0;
int counter = 0;
void *functionC() {
pthread_mutex_lock(&mutex1);
worker++;
counter++;
printf("Counter value: %d\n",counter);
pthread_mutex_unlock(&mutex1);
// Do something...
sleep(4);
pthread_mutex_lock(&mutex1);
jobs--;
worker--;
printf(" >>> Job done: %d\n",jobs);
pthread_mutex_unlock(&mutex1);
}
int main(int argc, char *argv[]) {
int i=0, j=0;
pthread_t thread[MAX_JOBS];
// Create threads if the number of working threads doesn't exceed MAX_THREADS
while (1) {
if (worker > MAX_THREADS) {
printf(" +++ In queue: %d\n", worker);
sleep(1);
} else {
//printf(" +++ Creating new thread: %d\n", worker);
pthread_create(&thread[i], NULL, &functionC, NULL);
//printf("%d",worker);
i++;
}
if (i == MAX_JOBS) break;
}
// Wait all threads to finish
for (j=0;j<MAX_JOBS;j++) {
pthread_join(thread[j], NULL);
}
return(0);
}
A while (1) loop keeps creating threads if the number of working threads is under a certain threshold. A mutex is supposed to lock the critical sections every time the global counter of the working threads is incremented (thread creation) and decremented (job is done). I thought it could work fine and for the most part it does, but weird things happen...
For instance, if I comment (as it is in this snippet) the printf //printf(" +++ Creating new thread: %d\n", worker); the while (1) seems to generate a random number (18-25 in my experience) threads (functionC prints out "Counter value: from 1 to 18-25"...) at a time instead of respecting the IF condition inside the loop. If I include the printf the loop seems to behave "almost" in the right way... This seems to hint that there's a missing "mutex" condition that I should add to the loop in main() to effectively lock the thread when MAX_THREADS is reached but after changing a LOT of times this code for the past few days I'm a bit lost, now. What am I missing?
Please, let me know what I should change in order to keep the number of threads constant it doesn't seem that I'm too far from the solution... Hopefully... :-)
Thanks in advance!
Your problem is that worker is not incremented until the new thread actually starts and gets to run - in the meantime, the main thread loops around, checks workers, finds that it hasn't changed, and starts another thread. It can repeat this many times, creating far too many threads.
So, you need to increment worker in the main thread, when you've decided to create a new thread.
You have another problem - you should be using condition variables to let the main thread sleep until it should start another thread, not using a busy-wait loop with a sleep(1); in it. The complete fixed code would look like:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#define MAX_JOBS 50
#define MAX_THREADS 5
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond1 = PTHREAD_COND_INITIALIZER;
int jobs = MAX_JOBS;
int workers = 0;
int counter = 0;
void *functionC() {
pthread_mutex_lock(&mutex1);
counter++;
printf("Counter value: %d\n",counter);
pthread_mutex_unlock(&mutex1);
// Do something...
sleep(4);
pthread_mutex_lock(&mutex1);
jobs--;
printf(" >>> Job done: %d\n",jobs);
/* Worker is about to exit, so decrement count and wakeup main thread */
workers--;
pthread_cond_signal(&cond1);
pthread_mutex_unlock(&mutex1);
return NULL;
}
int main(int argc, char *argv[]) {
int i=0, j=0;
pthread_t thread[MAX_JOBS];
// Create threads if the number of working threads doesn't exceed MAX_THREADS
while (i < MAX_JOBS) {
/* Block on condition variable until there are insufficient workers running */
pthread_mutex_lock(&mutex1);
while (workers >= MAX_THREADS)
pthread_cond_wait(&cond1, &mutex1);
/* Another worker will be running shortly */
workers++;
pthread_mutex_unlock(&mutex1);
pthread_create(&thread[i], NULL, &functionC, NULL);
i++;
}
// Wait all threads to finish
for (j=0;j<MAX_JOBS;j++) {
pthread_join(thread[j], NULL);
}
return(0);
}
Note that even though this works, it isn't ideal - it's best to create the number of threads you want up-front, and have them loop around, waiting for work. This is because creating and destroying threads has significant overhead, and because it often simplifies resource management. A version of your code rewritten to work like this would look like:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#define MAX_JOBS 50
#define MAX_THREADS 5
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
int jobs = MAX_JOBS;
int counter = 0;
void *functionC()
{
int running_job;
pthread_mutex_lock(&mutex1);
counter++;
printf("Counter value: %d\n",counter);
while (jobs > 0) {
running_job = jobs--;
pthread_mutex_unlock(&mutex1);
printf(" >>> Job starting: %d\n", running_job);
// Do something...
sleep(4);
printf(" >>> Job done: %d\n", running_job);
pthread_mutex_lock(&mutex1);
}
pthread_mutex_unlock(&mutex1);
return NULL;
}
int main(int argc, char *argv[]) {
int i;
pthread_t thread[MAX_THREADS];
for (i = 0; i < MAX_THREADS; i++)
pthread_create(&thread[i], NULL, &functionC, NULL);
// Wait all threads to finish
for (i = 0; i < MAX_THREADS; i++)
pthread_join(thread[i], NULL);
return 0;
}