I witnessed a very interesting behaviour when using CUDA 4.2 and driver 295.41 on Linux.
The code itself is nothing more than finding the maximum value of a random matrix and labelling the position to be 1.
#include <stdio.h>
#include <stdlib.h>
const int MAX = 8;
static __global__ void position(int* d, int len) {
int idx = threadIdx.x + blockIdx.x*blockDim.x;
if (idx < len)
d[idx] = (d[idx] == MAX) ? 1 : 0;
}
int main(int argc, const char** argv) {
int colNum = 16*512, rowNum = 1024;
int len = rowNum * colNum;
int* h = (int*)malloc(len*sizeof(int));
int* d = NULL;
cudaMalloc((void**)&d, len*sizeof(int));
// get a random matrix
for (int i = 0; i < len; i++) {
h[i] = rand()%(MAX+1);
}
// launch kernel
int threads = 128;
cudaMemcpy(d, h, len*sizeof(int), cudaMemcpyHostToDevice);
position<<<(len-1)/threads+1, threads>>>(d, len);
cudaMemcpy(h, d, len*sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(d);
free(h);
return 0;
}
When I set the rowNum = 1024, the code does not work at all as if the kernel has never been launched.
If rowNum = 1023, everything works fine.
And this rowNum value is somehow convoluted with the block size (in this example, 128), if I change the block size to be 512, the behaviour happens between rowNum = 4095 and 4096.
I'm not quite sure if this is a bug or did I miss anything?
You should always check for errors after calling CUDA functions. For example, in your code the invalid configuration argument error occurs during kernel launch.
This usually means that the grid or block dimensions are unvalid.
With colNum = 16*512, rowNum = 1024 you are attempting to run 65536 blocks x 128 threads, exceeding the maximum grid dimension (which is 65535 blocks for GPUs with compute capability 1.x and 2.x, not sure about 3.x).
If you need to run more threads, you can either increase block size (you have alredy tried it and it gave some effect) or use 2D/3D grid (3D is available only for devices with compute capability 2.0 or higher).
Related
I am measuring the running time of kernels, as seen from a CPU thread, by measuring the interval from before launching a kernel to after a cudaDeviceSynchronize (using gettimeofday). I have a cudaDeviceSynchronize before I start recording the interval. I also instrument the kernels to record the timestamp on the GPU (using clock64) at the start of the kernel by thread(0,0,0) of each block from block(0,0,0) to block(occupancy-1,0,0) to an array of size equal to number of SMs. Every thread at the end of the kernel code, updates the timestamp to another array (of the same size) at the index equal to the index of the SM it runs on.
The intervals calculated from the two arrays are 60-70% of that measured from the CPU thread.
For example, on a K40, while gettimeofday gives an interval of 140ms, the avg of intervals calculated from GPU timestamps is only 100ms. I have experimented with many grid sizes (15 blocks to 6K blocks) but have found similar behavior so far.
__global__ void some_kernel(long long *d_start, long long *d_end){
if(threadIdx.x==0){
d_start[blockIdx.x] = clock64();
}
//some_kernel code
d_end[blockIdx.x] = clock64();
}
Does this seem possible to the experts?
Does this seem possible to the experts?
I suppose anything is possible for code you haven't shown. After all, you may just have a silly bug in any of your computation arithmetic. But if the question is "is it sensible that there should be 40ms of unaccounted-for time overhead on a kernel launch, for a kernel that takes ~140ms to execute?" I would say no.
I believe the method I outlined in the comments is reasonably accurate. Take the minimum clock64() timestamp from any thread in the grid (but see note below regarding SM restriction). Compare it to the maximum time stamp of any thread in the grid. The difference will be comparable to the reported execution time of gettimeofday() to within 2 percent, according to my testing.
Here is my test case:
$ cat t1040.cu
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#define LS_MAX 2000000000U
#define MAX_SM 64
#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)
#include <time.h>
#include <sys/time.h>
#define USECPSEC 1000000ULL
__device__ int result;
__device__ unsigned long long t_start[MAX_SM];
__device__ unsigned long long t_end[MAX_SM];
unsigned long long dtime_usec(unsigned long long start){
timeval tv;
gettimeofday(&tv, 0);
return ((tv.tv_sec*USECPSEC)+tv.tv_usec)-start;
}
__device__ __inline__ uint32_t __mysmid(){
uint32_t smid;
asm volatile("mov.u32 %0, %%smid;" : "=r"(smid));
return smid;}
__global__ void kernel(unsigned ls){
unsigned long long int ts = clock64();
unsigned my_sm = __mysmid();
atomicMin(t_start+my_sm, ts);
// junk code to waste time
int tv = ts&0x1F;
for (unsigned i = 0; i < ls; i++){
tv &= (ts+i);}
result = tv;
// end of junk code
ts = clock64();
atomicMax(t_end+my_sm, ts);
}
// optional command line parameter 1 = kernel duration, parameter 2 = number of blocks, parameter 3 = number of threads per block
int main(int argc, char *argv[]){
unsigned ls;
if (argc > 1) ls = atoi(argv[1]);
else ls = 1000000;
if (ls > LS_MAX) ls = LS_MAX;
int num_sms = 0;
cudaDeviceGetAttribute(&num_sms, cudaDevAttrMultiProcessorCount, 0);
cudaCheckErrors("cuda get attribute fail");
int gpu_clk = 0;
cudaDeviceGetAttribute(&gpu_clk, cudaDevAttrClockRate, 0);
if ((num_sms < 1) || (num_sms > MAX_SM)) {printf("invalid sm count: %d\n", num_sms); return 1;}
unsigned blks;
if (argc > 2) blks = atoi(argv[2]);
else blks = num_sms;
if ((blks < 1) || (blks > 0x3FFFFFFF)) {printf("invalid blocks: %d\n", blks); return 1;}
unsigned ntpb;
if (argc > 3) ntpb = atoi(argv[3]);
else ntpb = 256;
if ((ntpb < 1) || (ntpb > 1024)) {printf("invalid threads: %d\n", ntpb); return 1;}
kernel<<<1,1>>>(100); // warm up
cudaDeviceSynchronize();
cudaCheckErrors("kernel fail");
unsigned long long *h_start, *h_end;
h_start = new unsigned long long[num_sms];
h_end = new unsigned long long[num_sms];
for (int i = 0; i < num_sms; i++){
h_start[i] = 0xFFFFFFFFFFFFFFFFULL;
h_end[i] = 0;}
cudaMemcpyToSymbol(t_start, h_start, num_sms*sizeof(unsigned long long));
cudaMemcpyToSymbol(t_end, h_end, num_sms*sizeof(unsigned long long));
unsigned long long htime = dtime_usec(0);
kernel<<<blks,ntpb>>>(ls);
cudaDeviceSynchronize();
htime = dtime_usec(htime);
cudaMemcpyFromSymbol(h_start, t_start, num_sms*sizeof(unsigned long long));
cudaMemcpyFromSymbol(h_end, t_end, num_sms*sizeof(unsigned long long));
cudaCheckErrors("some error");
printf("host elapsed time (ms): %f \n device sm clocks:\n start:", htime/1000.0f);
unsigned long long max_diff = 0;
for (int i = 0; i < num_sms; i++) {printf(" %12lu ", h_start[i]);}
printf("\n end: ");
for (int i = 0; i < num_sms; i++) {printf(" %12lu ", h_end[i]);}
for (int i = 0; i < num_sms; i++) if ((h_start[i] != 0xFFFFFFFFFFFFFFFFULL) && (h_end[i] != 0) && ((h_end[i]-h_start[i]) > max_diff)) max_diff=(h_end[i]-h_start[i]);
printf("\n max diff clks: %lu\nmax diff kernel time (ms): %f\n", max_diff, max_diff/(float)(gpu_clk));
return 0;
}
$ nvcc -o t1040 t1040.cu -arch=sm_35
$ ./t1040 1000000 1000 128
host elapsed time (ms): 2128.818115
device sm clocks:
start: 3484744 3484724
end: 2219687393 2228431323
max diff clks: 2224946599
max diff kernel time (ms): 2128.117432
$
Notes:
This code can only be run on a cc3.5 or higher GPU due to the use of 64-bit atomicMin and atomicMax.
I've run it on a variety of grid configurations, on both a GT640 (very low end cc3.5 device) and K40c (high end) and the timing results between host and device agree to within 2% (for reasonably long kernel execution times. If you pass 1 as the command line parameter, with very small grid sizes, the kernel execution time will be very short (nanoseconds) whereas the host will see about 10-20us. This is kernel launch overhead being measured. So the 2% number is for kernels that take much longer than 20us to execute).
It accepts 3 (optional) command line parameters, the first of which varies the amount of time the kernel will execute.
My timestamping is done on a per-SM basis, because the clock64() resource is indicated to be a per-SM resource. The sm clocks are not guaranteed to be synchronized between SMs.
You can modify the grid dimensions. The second optional command line parameter specifies the number of blocks to launch. The third optional command line parameter specifies the number of threads per block. The timing methodology I have shown here should not be dependent on number of blocks launched or number of threads per block. If you specify fewer blocks than SMs, the code should ignore "unused" SM data.
I wrote the following very simple pthread code to test how it scales up. I am running the code on a machine with 8 logical processors and at no time do I create more than 8 threads (to avoid context switching).
With increasing number of threads, each thread has to do lesser amount of work. Also, it is evident from the code that there are no shared Data structures between the threads which might be a bottleneck. But still, my performance degrades as I increase the number of threads.
Can somebody tell me what am I doing wrong here.
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int NUM_THREADS = 3;
unsigned long int COUNTER = 10000000000000;
unsigned long int LOOP_INDEX;
void* addNum(void *data)
{
unsigned long int sum = 0;
for(unsigned long int i = 0; i < LOOP_INDEX; i++) {
sum += 100;
}
return NULL;
}
int main(int argc, char** argv)
{
NUM_THREADS = atoi(argv[1]);
pthread_t *threads = (pthread_t*)malloc(sizeof(pthread_t) * NUM_THREADS);
int rc;
clock_t start, diff;
LOOP_INDEX = COUNTER/NUM_THREADS;
start = clock();
for (int t = 0; t < NUM_THREADS; t++) {
rc = pthread_create((threads + t), NULL, addNum, NULL);
if (rc) {
printf("ERROR; return code from pthread_create() is %d", rc);
exit(-1);
}
}
void *status;
for (int t = 0; t < NUM_THREADS; t++) {
rc = pthread_join(threads[t], &status);
}
diff = clock() - start;
int sec = diff / CLOCKS_PER_SEC;
printf("%d",sec);
}
Note: All the answers I found online said that the overhead of creating the threads is more than the work they are doing. To test it, I commented out everything in the "addNum()" function. But then, after doing that no matter how many threads I create, the time taken by the code is 0 seconds. So there is no overhead as such, I think.
clock() counts CPU time used, across all threads. So all that's telling you is that you're using a little bit more total CPU time, which is exactly what you would expect.
It's the total wall clock elapsed time which should be going down if your parallelisation is effective. Measure that with clock_gettime() specifying the CLOCK_MONOTONIC clock instead of clock().
I am making a CUDA program that implements the data parallel prefix sum calculation operating upon N numbers. My code is also supposed to generate the numbers on the host using a random number generator. However, I seem to always run into a "unrecognized token" and "expected a declaration" error on the ending bracket of int main when attempting to compile. I am running the code on Linux.
#include <stdio.h>
#include <cuda.h>
#include <stdlib.h>
#include <math.h>
__global__ void gpu_cal(int *a,int i, int n) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if(tid>=i && tid < n) {
a[tid] = a[tid]+a[tid-i];
}
}
int main(void)
{
int key;
int *dev_a;
int N=10;//size of 1D array
int B=1;//blocks in the grid
int T=10;//threads in a block
do{
printf ("Some limitations:\n");
printf (" Maximum number of threads per block = 1024\n");
printf (" Maximum sizes of x-dimension of thread block = 1024\n");
printf (" Maximum size of each dimension of grid of thread blocks = 65535\n");
printf (" N<=B*T\n");
do{
printf("Enter size of array in one dimension, currently %d\n",N);
scanf("%d",&N);
printf("Enter size of blocks in the grid, currently %d\n",B);
scanf("%d",&B);
printf("Enter size of threads in a block, currently %d\n",T);
scanf("%d",&T);
if(N>B*T)
printf("N>B*T, this will result in an incorrect result generated by GPU, please try again\n");
if(T>1024)
printf("T>1024, this will result in an incorrect result generated by GPU, please try again\n");
}while((N>B*T)||(T>1024));
cudaEvent_t start, stop; // using cuda events to measure time
float elapsed_time_ms1, elapsed_time_ms3;
int a[N],gpu_result[N];//for result generated by GPU
int cpu_result[N];//CPU result
cudaMalloc((void**)&dev_a,N * sizeof(int));//allocate memory on GPU
int i,j;
srand(1); //initialize random number generator
for (i=0; i < N; i++) // load array with some numbers
a[i] = (int)rand() ;
cudaMemcpy(dev_a, a , N*sizeof(int),cudaMemcpyHostToDevice);//load data from host to device
cudaEventCreate(&start); // instrument code to measure start time
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
//GPU computation
for(j=0;j<log(N)/log(2);j++){
gpu_cal<<<B,T>>>(dev_a,pow(2,j),N);
cudaThreadSynchronize();
}
cudaMemcpy(gpu_result,dev_a,N*sizeof(int),cudaMemcpyDeviceToHost);
cudaEventRecord(stop, 0); // instrument code to measue end time
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsed_time_ms1, start, stop );
printf("\n\n\nTime to calculate results on GPU: %f ms.\n", elapsed_time_ms1); // print out execution time
//CPU computation
cudaEventRecord(start, 0);
for(i=0;i<N;i++)
{
cpu_result[i]=0;
for(j=0;j<=i;j++)
{
cpu_result[i]=cpu_result[i]+a[j];
}
}
cudaEventRecord(stop, 0); // instrument code to measue end time
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsed_time_ms3, start, stop );
printf("Time to calculate results on CPU: %f ms.\n\n", elapsed_time_ms3); // print out execution time
//Error check
for(i=0;i < N;i++) {
if (gpu_result[i] != cpu_result[i] ) {
printf("ERROR!!! CPU and GPU create different answers\n");
break;
}
}
//Calculate speedup
printf("Speedup on GPU compared to CPU= %f\n", (float) elapsed_time_ms3 / (float) elapsed_time_ms1);
printf("\nN=%d",N);
printf("\nB=%d",B);
printf("\nT=%d",T);
printf("\n\n\nEnter '1' to repeat, or other integer to terminate\n");
scanf("%d",&key);
}while(key == 1);
cudaFree(dev_a);//deallocation
return 0;
}
The very last } in your code is a Unicode character. If you delete this entire line, and retype the }, the error will be gone.
There are two compile errors in your code.
First, Last ending bracket is a unicode character, so you should resave your code as unicode or delete and rewrite the last ending bracket.
Second, int type variable N which used at this line - int a[N],gpu_result[N];//for result generated by GPU
was declared int type, but it's not allowed in c or c++ compiler, so you should change the N declaration as const int N.
I created a CUDA function for calculating the sum of an image using its histogram.
I'm trying to compile the kernel and the wrapper function for multiple compute capabilities.
Kernel:
__global__ void calc_hist(unsigned char* pSrc, int* hist, int width, int height, int pitch)
{
int xIndex = blockIdx.x * blockDim.x + threadIdx.x;
int yIndex = blockIdx.y * blockDim.y + threadIdx.y;
#if __CUDA_ARCH__ > 110 //Shared Memory For Devices Above Compute 1.1
__shared__ int shared_hist[256];
#endif
int global_tid = yIndex * pitch + xIndex;
int block_tid = threadIdx.y * blockDim.x + threadIdx.x;
if(xIndex>=width || yIndex>=height) return;
#if __CUDA_ARCH__ == 110 //Calculate Histogram In Global Memory For Compute 1.1
atomicAdd(&hist[pSrc[global_tid]],1); /*< Atomic Add In Global Memory */
#elif __CUDA_ARCH__ > 110 //Calculate Histogram In Shared Memory For Compute Above 1.1
shared_hist[block_tid] = 0; /*< Clear Shared Memory */
__syncthreads();
atomicAdd(&shared_hist[pSrc[global_tid]],1); /*< Atomic Add In Shared Memory */
__syncthreads();
if(shared_hist[block_tid] > 0) /* Only Write Non Zero Bins Into Global Memory */
atomicAdd(&(hist[block_tid]),shared_hist[block_tid]);
#else
return; //Do Nothing For Devices Of Compute Capabilty 1.0
#endif
}
Wrapper Function:
int sum_8u_c1(unsigned char* pSrc, double* sum, int width, int height, int pitch, cudaStream_t stream = NULL)
{
#if __CUDA_ARCH__ == 100
printf("Compute Capability Not Supported\n");
return 0;
#else
int *hHist,*dHist;
cudaMalloc(&dHist,256*sizeof(int));
cudaHostAlloc(&hHist,256 * sizeof(int),cudaHostAllocDefault);
cudaMemsetAsync(dHist,0,256 * sizeof(int),stream);
dim3 Block(16,16);
dim3 Grid;
Grid.x = (width + Block.x - 1)/Block.x;
Grid.y = (height + Block.y - 1)/Block.y;
calc_hist<<<Grid,Block,0,stream>>>(pSrc,dHist,width,height,pitch);
cudaMemcpyAsync(hHist,dHist,256 * sizeof(int),cudaMemcpyDeviceToHost,stream);
cudaStreamSynchronize(stream);
(*sum) = 0.0;
for(int i=1; i<256; i++)
(*sum) += (hHist[i] * i);
printf("sum = %f\n",(*sum));
cudaFree(dHist);
cudaFreeHost(hHist);
return 1;
#endif
}
Question 1:
When compiling for sm_10, the wrapper and the kernel shouldn't execute. But that is not what happens. The whole wrapper function executes. The output shows sum = 0.0.
I expected the output to be Compute Capability Not Supported as I have added the printf statement in the start of the wrapper function.
How can I prevent the wrapper function from executing on sm_10? I don't want to add any run-time checks like if statements etc. Can it be achieved through template meta programming?
Question 2:
When compiling for greater than sm_10, the program executes correctly only if I add cudaStreamSynchronize after the kernel call. But if I do not synchronize, the output is sum = 0.0. Why is it happening? I want the function to be asynchronous w.r.t the host as much as possible. Is it possible to shift the only loop inside the kernel?
I am using GTX460M, CUDA 5.0, Visual Studio 2008 on Windows 8.
Ad. Question 1
As already Robert explained in the comments - __CUDA_ARCH__ is defined only when compiling device code. To clarify: when you invoke nvcc, the code is parsed and compiled twice - once for CPU and once for GPU. The existence of __CUDA_ARCH__ can be used to check which of those two passes occurs, and then for the device code - as you do in the kernel - it can be checked which GPU are you targetting.
However, for the host side it is not all lost. While you don't have __CUDA_ARCH__, you can call API function cudaGetDeviceProperties which returns lots of information about your GPU. In particular, you can be interested in fields major and minor which indicate the Compute Capability. Note - this is done at run-time, not a preprocessing stage, so the same CPU code will work on all GPUs.
Ad. Question 2
Kernel calls and cudaMemoryAsync are asynchronous. It means that if you don't call cudaStreamSynchronize (or alike) the followup CPU code will continue running even if your GPU hasn't finished your work. This means, that the data you copy from dHist to hHist might not be there yet when you begin operating on hHist in the loop. If you want to work on the output from a kernel you have to wait till the kernel finishes.
Note that cudaMemcpy (without Async) has an implicit synchronization inside.
I had wrote a program as below which allocated about 1.2G memory at once, and I tested it on Linux. Then I found
If I defined the macro *WRITE_MEM*, the physical memory usage (inspected by the command top) will increase linearly.
If I didn't define the macro, the physical memory usage is very small (about hundreds of kilobytes) and not changed verly large.
I dont's understand the phenomenon.
#include <iostream>
#include <cmath>
#include <cstdlib>
using namespace std;
float sum = 0.;
int main (int argc, char** argv)
{
float* pf = (float*) malloc(1024*1024*300*4);
float* p = pf;
for (int i = 0; i < 300; i++) {
cout << i << "..." << endl;
float* qf = (float *) malloc(1024*1024*4);
float* q = qf;
for (int j = 0; j < 1024*1024; j++) {
*q++ = sin(j*j*j*j) ;
}
q = qf;
for (int j = 0; j < 1024*1024; j++) {
#ifdef WRITE_MEM // The physical memory usage will increase linearly
*p++ = *q++;
sum += *q;
#else // The physical memory usage is small and will not change
p++;
// or
// sum += *p++;
#endif
}
free(qf);
}
free(pf);
return 0;
}
Linux allocates virtual memory immediately, but doesn't back it with physical memory until the pages are actually used. This causes processes to only use the physical memory they actually require, leaving the unused memory available for the rest of the system.