Stack smash test environment - linux

I am trying to test buffer overflow attacks in virtualbox and have been struggling for the past few weeks due to all the security featrues of various distros.
I have tried following tutorials online step by step with no luck.
Rather than trying to disable all the security features, I tried getting an old linux distro but most of them don't come with gcc and lack working repositories now.
I even found a youtube video going step-by-step on Ubuntu 10.10 (which I downloaded too), including all the commands to disable the various security features and had no luck. I could get the segmentation fault but not the 'illegal instruction'.
Is there an ancient linux distro I could still download with none of this protection, which comes with gcc (or one of those huge dvd isos with a complete repository) so I can test this out?

You don't need to.
Compiling an executable with the GCC flag -fno-stack-protector and turning off ASLR with sudo sh -c "echo 0 > /proc/sys/kernel/randomize_va_space" disables the two main memory corruption attack mitigations in many Linux distributions. (Both of these protection technologies date back enough years to make finding a copy of an old distro time consuming, save Damn Vulnerable Linux)
It's possible on certain distributions that you'll have write xor execute memory pages, which is implemented through a number of different packages which you'll have to disable yourself. That considered, if you're not getting a stack smashing warning it's virtually certain that you don't have an executable with W^X memory pages.
This means if you're getting a segmentation fault, you've probably successfully overwritten the stored EIP on the stack and simply have your shellcode offset wrong or you've made an endianness mistake (some illegal multibyte instructions backwards are no longer illegal!). Examine your program in GDB and I think you'll see where you went wrong.
Exploring The Shellcoder's Handbook may be a profitable use of your time.

Related

Basic Install Cygwin Windows 10 - IO Error opening <file>

I am using Windows 10.
I downloaded setup-x86_64.exe from https://cygwin.com/install.html and am selecting the defaults (Install from Internet/Direct Connection/default locations).
I have tried several mirrors including cygwin.mirror.constant.com
I am accepting all the default packages plus some basic developer stuff (gdb, make) and check "Select required packages (RECOMMENDED)".
I get quite a way through the Cygwin Setup and then get the first of many pop-up messages "IO Error Opening file....._autorebase/binutils/cygwin/grep/mintty etc. Do you want to skip this package?"
If I skip the packages, I get a non-working Cygwin install (it can't find mintty). If I don't skip the packages, it hangs when the Cygwin installer hangs when it gets to the first of the problem packages.
Thanks in advance about what part of the setup process I am missing.
A bit late, but anyway: I have stumbled across the same problems yesterday when I tried to install Cygwin on Windows 10 the first time.
I have followed all advice given at various sites (including this one): Disabled antivirus software, followed the Cygwin FAQ, and so on, but to no avail.
Then I studied the setup log and found a line which told something about an address mismatch (sorry that I don't have the exact wording - I surely won't repeat the experiment ...). That lead me to the idea that it might something have to do with ASLR (a technique for hardening the system against malware).
The next step was to turn off ASLR via the UI of Windows Defender. After I had done that, I could install Cygwin without any problems. I have not yet tested if I actually could use Cygwin when I turn on ASLR again; I don't feel very comfortable when having turned it off completely.
The alternative would be to turn off ASLR per executable. This is also possible in Windows Defender's UI. But it could mean adding dozens of exceptions, depending on how many Cygwin packages you have installed.
The technical reason for the problem is how POSIX's fork() works. Basically, it clones the parent process's image, using the same offset addresses. But when ASLR is active, those offsets will change when cloning the process, which will make fork() fail. Since fork() is extensively used by Cygwin, it can't operate as intended when ASLR is active.

How to test the kernel for kernel panics?

I am testing the Linux Kernel on an embedded device and would like to find situations / scenarios in which Linux Kernel would issue panics.
Can you suggest some test steps (manual or code automated) to create Kernel panics?
There's a variety of tools that you can use to try to crash your machine:
crashme tries to execute random code; this is good for testing process lifecycle code.
fsx is a tool to try to exercise the filesystem code extensively; it's good for testing drivers, block io and filesystem code.
The Linux Test Project aims to create a large repository of kernel test cases; it might not be designed with crashing systems in particular, but it may go a long way towards helping you and your team keep everything working as planned. (Note that the LTP isn't proscriptive -- the kernel community doesn't treat their tests as anything important -- but the LTP team tries very hard to be descriptive about what the kernel does and doesn't do.)
If your device is network-connected, you can run nmap against it, using a variety of scanning options: -sV --version-all will try to find versions of all services running (this can be stressful), -O --osscan-guess will try to determine the operating system by throwing strange network packets at the machine and guessing by responses what the output is.
The nessus scanning tool also does version identification of running services; it may or may not offer any improvements over nmap, though.
You can also hand your device to users; they figure out the craziest things to do with software, they'll spot bugs you'd never even think to look for. :)
You can try following key combination
SysRq + c
or
echo c >/proc/sysrq-trigger
Crashme has been known to find unknown kernel panic situations, but it must be run in a potent way that creates a variety of signal exceptions handled within the process and a variety of process exit conditions.
The main purpose of the messages generated by Crashme is to determine if sufficiently interesting things are happening to indicate possible potency. For example, if the mprotect call is needed to allow memory allocated with malloc to be executed as instructions, and if you don't have the mprotect enabled in the source code crashme.c for your platform, then Crashme is impotent.
It seems that operating systems on x64 architectures tend to have execution turned off for data segments. Recently I have updated the crashme.c on http://crashme.codeplex.com/ to use mprotect in case of __APPLE__ and tested it on a MacBook Pro running MAC OS X Lion. This is the first serious update to Crashme since 1994. Expect to see updated Centos and Freebsd support soon.

How to increase probability of Linux core dumps matching symbols?

I have a very complex cross-platform application. Recently my team and I have been running stress tests and have encountered several crashes (and core dumps accompanying them). Some of these core dumps are very precise, and show me the exact location where the crash occurred with around 10 or more stack frames. Others sometimes have just one stack frame with ?? being the only symbol!
What I'd like to know is:
Is there a way to increase the probability of core dumps pointing in the right direction?
Why isn't the number of stack frames reported consistent?
Any best practice advise for managing core dumps.
Here's how I compile the binaries (in release mode):
Compiler and platform: g++ with glibc-2.3.2-95.50 on CentOS 3.6 x86_64 -- This helps me maintain compatibility with older versions of Linux.
All files are compiled with the -g flag.
Debug symbols are stripped from the final binary and saved in a separate file.
When I have a core dump, I use GDB with the executable which created the core, and the symbols file. GDB never complains that there's a mismatch between the core/binary/symbols.
Yet I sometimes get core dumps with no symbols at all! It's understandable that I'm linking against non-debug version of libstdc++ and libgcc, but it would be nice if at least the stack trace shows me where in my code did the faulty instruction call originate (although it may ultimately end in ??).
Others sometimes have just one stack frame with "??" being the only symbol!
There can be many reasons for that, among others:
the stack frame was trashed (overwritten)
EBP/RBP (on x86/x64) is currently not holding any meaningful value — this can happen e.g. in units compiled with -fomit-frame-pointer or asm units that do so
Note that the second point may occur simply by, for example, glibc being compiled in such a way. Having the debug info for such system libraries installed could mitigate this (something like what the glibc-debug{info,source} packages are on openSUSE).
gdb has more control over the program than glibc, so glibc's backtrace call would naturally be unable to print a backtrace if gdb cannot do so either.
But shipping the source would be much easier :-)
As an alternative, on a glibc system, you could use the backtrace function call (or backtrace_symbols or backtrace_symbols_fd) and filter out the results yourself, so only the symbols belonging to your own code are displayed. It's a bit more work, but then, you can really tailor it to your needs.
Have you tried installing debugging symbols of the various libraries that you are using? For example, my distribution (Ubuntu) provides libc6-dbg, libstdc++6-4.5-dbg, libgcc1-dbg etc.
If you're building with optimisation enabled (eg. -O2), then the compiler can blur the boundary between stack frames, for example by inlining. I'm not sure that this would cause backtraces with just one stack frame, but in general the rule is to expect great debugging difficulty since the code you are looking it in the core dump has been modified and so does not necessarily correspond to your source.

Stripping down a kernel in linux?

I recently read a post (admittedly its a few years old) and it was advice for fast number-crunching program:
"Use something like Gentoo Linux with 64 bit processors as you can compile it natively as you install. This will allow you to get the maximum punch out of the machine as you can strip the kernel right down to only what you need."
can anyone elaborate on what they mean by stripping down the kernel? Also, as this post was about 6 years old, which current version of Linux would be best for this (to aid my google searches)?
There is some truth in the statement, as well as something somewhat nonsensical.
You do not spend resources on processes you are not running. So as a first instance I would try minimise the number of processes running. For that we quite enjoy Ubuntu server iso images at work -- if you install from those, log in and run ps or pstree you see a thing of beauty: six or seven processes. Nothing more. That is good.
That the kernel is big (in terms of source size or installation) does not matter per se. Many of this size stems from drivers you may not be using anyway. And the same rule applies again: what you do not run does not compete for resources.
So think about a headless server, stripped down -- rather than your average desktop installation with more than a screenful of processes trying to make the life of a desktop user easier.
You can create a custom linux kernel for any distribution.
Start by going to kernel.org and downloading the latest source. Then choose your configuration interface (you have the choice of console text, 'config', ncurses style 'menuconfig', KDE style 'xconfig' and GNOME style 'gconfig' these days) and execute ./make whateverconfig. After choosing all the options, type make to create your kernel. Then make modules to compile all the selected modules for this kernel. Then, make install will copy the files to your /boot directory, and make modules_install, copies the modules. Next, go to /boot and use mkinitrd to create the ram disk needed to boot properly, if needed. Then you'll add the kernel to your GRUB menu.lst, by editing menu.lst and copying the latest entry and adding a similar one pointing to the new kernel version.
Of course, that's a basic overview and you should probably search for 'linux kernel compile' to find more detailed info. Selecting the necessary kernel modules and options takes a bit of experience - if you choose the wrong options, the kernel might not be bootable and you'll have to start over, which is a pain because selecting the options and compiling the kernel can take 15-30 minutes.
Ultimately, it isn't going to make a large difference to compile a stripped-down custom kernel unless your given task is very, very performance sensitive. It makes sense to remove things you're never going to use from the kernel, though, like say ISDN support.
I'd have to say this question is more suited to SuperUser.com, by the way, as it's not quite about programming.

Building a custom Linux Live CD

Can anyone point me to a good tutorial on creating a bootable Linux CD from scratch?
I need help with a fairly specialized problem: my firm sells an expansion card that requires custom firmware. Currently we use an extremely old live CD image of RH7.2 that we update with current firmware. Manufacturing puts the cards in a machine, boots off the CD, the CD writes the firmware, they power off and pull the cards. Because of this cycle, it's essential that the CD boot and shut down as quickly as possible.
The problem is that with the next generation of cards, I have to update the CD to a 2.6 kernel. It's easy enough to acquire a pre-existing live CD - but those all are designed for showing off Linux on the desktop - which means they take forever to boot.
Can anyone fix me up with a current How-To?
Update:
So, just as a final update for anyone reading this later - the tool I ended up using was "livecd-creator".
My reason for choosing this tool was that it is available for RedHat-based distributions like CentOs, Fedora and RHEL - which are all distributions that my company supports already. In addition, while the project is very poorly documented it is extremely customizable. I was able to create a minimal LiveCD and edit the boot sequence so that it booted directly into the firmware updater instead of a bash shell.
The whole job would have only taken an hour or two if there had been a README explaining the configuration file!
There are a couple of interesting projects you could look into.
But first: does it have to be a CD-ROM? That's probably the slowest possible storage (well, apart from tape, maybe) you could use. What about a fast USB stick or a an IEE1394 hard-disk or maybe even an eSATA hard-disk?
Okay, there are several Live-CDs that are designed to be very small, in order to e.g. fit on a business card sized CD. Some were also designed to be booted from a USB stick, back when that meant 64-128 MiByte: Damn Small Linux is one of the best known ones, however it uses a 2.4 kernel. There is a sister project called Damn Small Linux - Not, which has a 2.6 kernel (although it seems it hasn't been updated in years).
Another project worth noting is grml, a Live-CD for system administration tasks. It does not boot into a graphic environment, and is therefore quite fast; however, it still contains about 2 GiByte of software compressed onto a CD-ROM. But it also has a smaller flavor, aptly named grml-small, which only contains about 200 MiByte of software compressed into 60 MiByte.
Then there is Morphix, which is a Live-CD builder toolkit based on Knoppix. ("Morphable Knoppix"!) Morphix is basically a tool to build your own special purpose Live-CD.
The last thing I want to mention is MachBoot. MachBoot is a super-fast Live-CD. It uses various techniques to massively speed up the boot process. I believe they even trace the order in which blocks are accessed during booting and then remaster the ISO so that those blocks are laid out contiguously on the medium. Their current record is less than 6 seconds to boot into a full graphical desktop environment. However, this also seems to be stale.
One key piece of advice I can give is that most LiveCDs use a compressed filesystem called squashfs to cram as much data on the CD as possible. Since you don't need compression, you could run the mksquashfs step (present in most tutorials) with -noDataCompression and -noFragmentCompression to save on decompression time. You may even be able to drop the squashfs approach entirely, but this would require some restructuring. This may actually be slower depending on your CD-ROM read speed vs. CPU speed, but it's worth looking into.
This Ubuntu tutorial was effective enough for me to build a LiveCD based on 8.04. It may be useful for getting the feel of how a LiveCD is composed, but I would probably not recommend using an Ubuntu LiveCD.
If at all possible, find a minimal LiveCD and build up with only minimal stripping out, rather than stripping down a huge LiveCD like Ubuntu. There are some situations in which the smaller distros are using smaller/faster alternatives rather than just leaving something out. If you want to get seriously hardcore, you could look at Linux From Scratch, and include only what you want, but that's probably more time than you want to spend.
Creating Your Own Custom Ubuntu 7.10 Or Linux Mint 4.0 Live-CD With Remastersys
Depends on your distro. Here's a good article you can check out from LWN.net
There is a book I used which covers a lot of distros, though it does not cover creating a flash-bootable image. The book is Live Linux(R) CDs: Building and Customizing Bootables. You can use it with supplemental information from your distro of choice.
So, just as a final update for anyone reading this later - the tool I ended up using was "livecd-creator".
My reason for choosing this tool was that it is available for RedHat-based distributions like CentOs, Fedora and RHEL - which are all distributions that my company supports already. In addition, while the project is very poorly documented it is extremely customizable. I was able to create a minimal LiveCD and edit the boot sequence so that it booted directly into the firmware updater instead of a bash shell.
The whole job would have only taken an hour or two if there had been a README explaining the configuration file!
Debian Live provides the best tools for building a Linux Live CD. Webconverger uses Debian Live for example.
It's very easy to use.
sudo apt-get install live-helper # from Debian unstable, which should work fine from Ubuntu
lh_config # edit config/* to your liking
sudo lh_build

Resources