Namespaces in node.js with require - node.js

I am playing around and learning about vows with a personal project. This is a small client side library, with testing done in vows. Therefore, I must build and test a file that is written like this:
(function(exports) {
var module = export.module = { "version":"0.0.1" };
//more stuff
})(this);
In my testing (based off of science.js, d3, etc.) requires that module like so:
require("../module");
I continued to get a "module not defined error" when trying to run the tests, so I went to a repl and ran:
require("../module")
and it returned:
{ module: { version: "0.0.1" } }
I realize I could do something like:
var module = require("../module").module;
but feel like I am creating a problem by doing it that way, especially since the libraries that I based this project on are doing it in the format I described.
I would like for my project to behave similar to those which I based it off of, where:
require("../module");
creates a variable in this namespace:
module.version; //is valid.
I have seen this in a variety of libraries, and I am following the format and thought process to the T but believe I might be missing something about require behavior I don't know about.

There is no problem creating it this way. Modules define what they return in the module.exports object. By the way, you don't actually need self executing functions (SEF), there is no global leakage like in browsers :-)
Examples
module1.js:
module.exports = {
module: { 'version': '0.1.1' }
};
main.js:
var module1 = require( './module1.js' );
// module1 has what is exported in module1.js
Once you've understood how this works, you can easily export the version number right away if you want to:
module1.js:
module.exports = '0.1.1';
main.js:
var module1 = require( './module1.js' );
console.log( module1 === '0.1.1' ); // true
Or if you want some logic, you can easily extend your module1.js file like this:
module.exports = ( function() {
// some code
return version;
} () ); // note the self executing part :-)
// since it's self executed, the exported part
// is what's returned in the SEF
Or, as many modules do, if you want to export some utility functions (and keep others "private"), you could do it like this:
module.exports = {
func1: function() {
return someFunc();
},
func2: function() {},
prop: '1.0.0'
};
// This function is local to this file, it's not exported
function someFunc() {
}
So, in main.js:
var module1 = require( './module1.js' );
module1.func1(); // works
module1.func2(); // works
module1.prop; // "1.0.0"
module1.someFunc(); // Reference error, the function doesn't exist
Your special case
About your special case, I wouldn't recommend doing it like they're doing.
If you look here: https://github.com/jasondavies/science.js/blob/master/science.v1.js
You see that they're not using the var keyword. So, they're creating a global variable.
This is why they can access it once they require the module defining the global variable.
And by the way, the exports argument is useless in their case. It's even misleading, since it actually is the global object (equivalent of window in browsers), not the module.exports object (this in functions is the global object, it'd be undefined if strict mode were enabled).
Conclusion
Don't do it like they're doing, it's a bad idea. Global variables are a bad idea, it's better to use node's philosophy, and to store the required module in a variable that you reuse.
If you want to have an object that you can use in client side and test in node.js, here is a way:
yourModule.js:
// Use either node's export or the global object in browsers
var global = module ? module.exports : window.yourModule;
( function( exports ) {
var yourModule = {};
// do some stuff
exports = yourModule;
} ( global ) );
Which you can shorten to this in order to avoid creating the global variable:
( function( exports ) {
var yourModule = {};
// do some stuff
exports = yourModule;
} ( module ? module.exports : window.yourModule ) );
This way, you can use it like this on the client-side:
yourModule.someMethod(); // global object, "namespace"
And on the server side:
var yourModule = require( '../yourModule.js' );
yourModule.someMethod(); // local variable :-)
Just FYI, .. means "parent directory". This is the relative path of where to get the module. If the file were in the same directory, you'd use ..

Related

How to use module.exports of Nodejs [duplicate]

What is the purpose of Node.js module.exports and how do you use it?
I can't seem to find any information on this, but it appears to be a rather important part of Node.js as I often see it in source code.
According to the Node.js documentation:
module
A reference to the current
module. In particular module.exports
is the same as the exports object. See
src/node.js for more information.
But this doesn't really help.
What exactly does module.exports do, and what would a simple example be?
module.exports is the object that's actually returned as the result of a require call.
The exports variable is initially set to that same object (i.e. it's a shorthand "alias"), so in the module code you would usually write something like this:
let myFunc1 = function() { ... };
let myFunc2 = function() { ... };
exports.myFunc1 = myFunc1;
exports.myFunc2 = myFunc2;
to export (or "expose") the internally scoped functions myFunc1 and myFunc2.
And in the calling code you would use:
const m = require('./mymodule');
m.myFunc1();
where the last line shows how the result of require is (usually) just a plain object whose properties may be accessed.
NB: if you overwrite exports then it will no longer refer to module.exports. So if you wish to assign a new object (or a function reference) to exports then you should also assign that new object to module.exports
It's worth noting that the name added to the exports object does not have to be the same as the module's internally scoped name for the value that you're adding, so you could have:
let myVeryLongInternalName = function() { ... };
exports.shortName = myVeryLongInternalName;
// add other objects, functions, as required
followed by:
const m = require('./mymodule');
m.shortName(); // invokes module.myVeryLongInternalName
This has already been answered but I wanted to add some clarification...
You can use both exports and module.exports to import code into your application like this:
var mycode = require('./path/to/mycode');
The basic use case you'll see (e.g. in ExpressJS example code) is that you set properties on the exports object in a .js file that you then import using require()
So in a simple counting example, you could have:
(counter.js):
var count = 1;
exports.increment = function() {
count++;
};
exports.getCount = function() {
return count;
};
... then in your application (web.js, or really any other .js file):
var counting = require('./counter.js');
console.log(counting.getCount()); // 1
counting.increment();
console.log(counting.getCount()); // 2
In simple terms, you can think of required files as functions that return a single object, and you can add properties (strings, numbers, arrays, functions, anything) to the object that's returned by setting them on exports.
Sometimes you'll want the object returned from a require() call to be a function you can call, rather than just an object with properties. In that case you need to also set module.exports, like this:
(sayhello.js):
module.exports = exports = function() {
console.log("Hello World!");
};
(app.js):
var sayHello = require('./sayhello.js');
sayHello(); // "Hello World!"
The difference between exports and module.exports is explained better in this answer here.
Note that the NodeJS module mechanism is based on CommonJS modules which are supported in many other implementations like RequireJS, but also SproutCore, CouchDB, Wakanda, OrientDB, ArangoDB, RingoJS, TeaJS, SilkJS, curl.js, or even Adobe Photoshop (via PSLib).
You can find the full list of known implementations here.
Unless your module use node specific features or module, I highly encourage you then using exports instead of module.exports which is not part of the CommonJS standard, and then mostly not supported by other implementations.
Another NodeJS specific feature is when you assign a reference to a new object to exports instead of just adding properties and methods to it like in the last example provided by Jed Watson in this thread. I would personally discourage this practice as this breaks the circular reference support of the CommonJS modules mechanism. It is then not supported by all implementations and Jed example should then be written this way (or a similar one) to provide a more universal module:
(sayhello.js):
exports.run = function() {
console.log("Hello World!");
}
(app.js):
var sayHello = require('./sayhello');
sayHello.run(); // "Hello World!"
Or using ES6 features
(sayhello.js):
Object.assign(exports, {
// Put all your public API here
sayhello() {
console.log("Hello World!");
}
});
(app.js):
const { sayHello } = require('./sayhello');
sayHello(); // "Hello World!"
PS: It looks like Appcelerator also implements CommonJS modules, but without the circular reference support (see: Appcelerator and CommonJS modules (caching and circular references))
Some few things you must take care if you assign a reference to a new object to exports and /or modules.exports:
1. All properties/methods previously attached to the original exports or module.exports are of course lost because the exported object will now reference another new one
This one is obvious, but if you add an exported method at the beginning of an existing module, be sure the native exported object is not referencing another object at the end
exports.method1 = function () {}; // exposed to the original exported object
exports.method2 = function () {}; // exposed to the original exported object
module.exports.method3 = function () {}; // exposed with method1 & method2
var otherAPI = {
// some properties and/or methods
}
exports = otherAPI; // replace the original API (works also with module.exports)
2. In case one of exports or module.exports reference a new value, they don't reference to the same object any more
exports = function AConstructor() {}; // override the original exported object
exports.method2 = function () {}; // exposed to the new exported object
// method added to the original exports object which not exposed any more
module.exports.method3 = function () {};
3. Tricky consequence. If you change the reference to both exports and module.exports, hard to say which API is exposed (it looks like module.exports wins)
// override the original exported object
module.exports = function AConstructor() {};
// try to override the original exported object
// but module.exports will be exposed instead
exports = function AnotherConstructor() {};
the module.exports property or the exports object allows a module to select what should be shared with the application
I have a video on module_export available here
When dividing your program code over multiple files, module.exports is used to publish variables and functions to the consumer of a module. The require() call in your source file is replaced with corresponding module.exports loaded from the module.
Remember when writing modules
Module loads are cached, only initial call evaluates JavaScript.
It's possible to use local variables and functions inside a module, not everything needs to be exported.
The module.exports object is also available as exports shorthand. But when returning a sole function, always use module.exports.
According to: "Modules Part 2 - Writing modules".
the refer link is like this:
exports = module.exports = function(){
//....
}
the properties of exports or module.exports ,such as functions or variables , will be exposed outside
there is something you must pay more attention : don't override exports .
why ?
because exports just the reference of module.exports , you can add the properties onto the exports ,but if you override the exports , the reference link will be broken .
good example :
exports.name = 'william';
exports.getName = function(){
console.log(this.name);
}
bad example :
exports = 'william';
exports = function(){
//...
}
If you just want to exposed only one function or variable , like this:
// test.js
var name = 'william';
module.exports = function(){
console.log(name);
}
// index.js
var test = require('./test');
test();
this module only exposed one function and the property of name is private for the outside .
There are some default or existing modules in node.js when you download and install node.js like http, sys etc.
Since they are already in node.js, when we want to use these modules we basically do like import modules, but why? because they are already present in the node.js. Importing is like taking them from node.js and putting them into your program. And then using them.
Whereas Exports is exactly the opposite, you are creating the module you want, let's say the module addition.js and putting that module into the node.js, you do it by exporting it.
Before I write anything here, remember, module.exports.additionTwo is same as exports.additionTwo
Huh, so that's the reason, we do like
exports.additionTwo = function(x)
{return x+2;};
Be careful with the path
Lets say you have created an addition.js module,
exports.additionTwo = function(x){
return x + 2;
};
When you run this on your NODE.JS command prompt:
node
var run = require('addition.js');
This will error out saying
Error: Cannot find module addition.js
This is because the node.js process is unable the addition.js since we didn't mention the path. So, we have can set the path by using NODE_PATH
set NODE_PATH = path/to/your/additon.js
Now, this should run successfully without any errors!!
One more thing, you can also run the addition.js file by not setting the NODE_PATH, back to your nodejs command prompt:
node
var run = require('./addition.js');
Since we are providing the path here by saying it's in the current directory ./ this should also run successfully.
A module encapsulates related code into a single unit of code. When creating a module, this can be interpreted as moving all related functions into a file.
Suppose there is a file Hello.js which include two functions
sayHelloInEnglish = function() {
return "Hello";
};
sayHelloInSpanish = function() {
return "Hola";
};
We write a function only when utility of the code is more than one call.
Suppose we want to increase utility of the function to a different file say World.js,in this case exporting a file comes into picture which can be obtained by module.exports.
You can just export both the function by the code given below
var anyVariable={
sayHelloInEnglish = function() {
return "Hello";
};
sayHelloInSpanish = function() {
return "Hola";
};
}
module.export=anyVariable;
Now you just need to require the file name into World.js inorder to use those functions
var world= require("./hello.js");
The intent is:
Modular programming is a software design technique that emphasizes
separating the functionality of a program into independent,
interchangeable modules, such that each contains everything necessary
to execute only one aspect of the desired functionality.
Wikipedia
I imagine it becomes difficult to write a large programs without modular / reusable code. In nodejs we can create modular programs utilising module.exports defining what we expose and compose our program with require.
Try this example:
fileLog.js
function log(string) { require('fs').appendFileSync('log.txt',string); }
module.exports = log;
stdoutLog.js
function log(string) { console.log(string); }
module.exports = log;
program.js
const log = require('./stdoutLog.js')
log('hello world!');
execute
$ node program.js
hello world!
Now try swapping ./stdoutLog.js for ./fileLog.js.
What is the purpose of a module system?
It accomplishes the following things:
Keeps our files from bloating to really big sizes. Having files with e.g. 5000 lines of code in it are usually real hard to deal with during development.
Enforces separation of concerns. Having our code split up into multiple files allows us to have appropriate file names for every file. This way we can easily identify what every module does and where to find it (assuming we made a logical directory structure which is still your responsibility).
Having modules makes it easier to find certain parts of code which makes our code more maintainable.
How does it work?
NodejS uses the CommomJS module system which works in the following manner:
If a file wants to export something it has to declare it using module.export syntax
If a file wants to import something it has to declare it using require('file') syntax
Example:
test1.js
const test2 = require('./test2'); // returns the module.exports object of a file
test2.Func1(); // logs func1
test2.Func2(); // logs func2
test2.js
module.exports.Func1 = () => {console.log('func1')};
exports.Func2 = () => {console.log('func2')};
Other useful things to know:
Modules are getting cached. When you are loading the same module in 2 different files the module only has to be loaded once. The second time a require() is called on the same module the is pulled from the cache.
Modules are loaded in synchronous. This behavior is required, if it was asynchronous we couldn't access the object retrieved from require() right away.
ECMAScript modules - 2022
From Node 14.0 ECMAScript modules are no longer experimental and you can use them instead of classic Node's CommonJS modules.
ECMAScript modules are the official standard format to package JavaScript code for reuse. Modules are defined using a variety of import and export statements.
You can define an ES module that exports a function:
// my-fun.mjs
function myFun(num) {
// do something
}
export { myFun };
Then, you can import the exported function from my-fun.mjs:
// app.mjs
import { myFun } from './my-fun.mjs';
myFun();
.mjs is the default extension for Node.js ECMAScript modules.
But you can configure the default modules extension to lookup when resolving modules using the package.json "type" field, or the --input-type flag in the CLI.
Recent versions of Node.js fully supports both ECMAScript and CommonJS modules. Moreover, it provides interoperability between them.
module.exports
ECMAScript and CommonJS modules have many differences but the most relevant difference - to this question - is that there are no more requires, no more exports, no more module.exports
In most cases, the ES module import can be used to load CommonJS modules.
If needed, a require function can be constructed within an ES module using module.createRequire().
ECMAScript modules releases history
Release
Changes
v15.3.0, v14.17.0, v12.22.0
Stabilized modules implementation
v14.13.0, v12.20.0
Support for detection of CommonJS named exports
v14.0.0, v13.14.0, v12.20.0
Remove experimental modules warning
v13.2.0, v12.17.0
Loading ECMAScript modules no longer requires a command-line flag
v12.0.0
Add support for ES modules using .js file extension via package.json "type" field
v8.5.0
Added initial ES modules implementation
You can find all the changelogs in Node.js repository
let test = function() {
return "Hello world"
};
exports.test = test;

What is exports.install in node js?

Hi I found a framework where they use a lot this pattern.
exports.install = function(){
//code
}
but usually you see this pattern in nodejs
module.exports = {
//code
}
Is this the same thing or is this something else ?
exports is the object corresponding to module.exports before you do anything to it. I think it's due to some legacy code, but basically folks use module.exports if they want to replace the whole object with their own object or a function, while they use exports if they just want to hang functions off the module. It's a little confusing at first, but essentially exports.install just means that calling code would do something like:
const mod = require('that-module');
mod.install(params, callback); // call that function
The framework you're looking at is probably using it as part of a bootstrapping process, afaik it doesn't have significance to the node engine itself.
Yes, it is the same thing. You can use one of 2 ways to setup your code.
The different thing is memory. They point to same memory. You can think exports like a variable and you can not use this way to export your module:
Given this module:
// test.js
exports = {
// you can not use this way to export module.
// because at this time, `exports` points to another memory region
// and it did not lie on same memory with `module.exports`
sayHello: function() {
console.log("Hello !");
}
}
The following code will get the error: TypeError: test.sayHello is not a function
// app.js
var test = require("./test");
test.sayHello();
// You will get TypeError: test.sayHello is not a function
The correct way you must use module.exports to export your module:
// test.js
module.exports = {
// you can not use this way to export module.
sayHello: function() {
console.log("Hello !");
}
}
// app.js
var test = require("./test");
test.sayHello();
// Console prints: Hello !
So, it just is style of developer.

How Do I create a NodeJS Module?

I have read the details on NodeJS site : https://nodejs.org/api/modules.html. I don't understand how modules work, and what are the minimal steps for creating a module, and how npm can help me.
How can I create a module?
How do I use a module?
What does putting it on npm mean?
Note: this is a self answered question, with the purpose of sharing knowledge as a canonical.
You can create a NodeJS module using one line of code:
//mymodule.js
module.exports = 3;
Then you can load the module, by using require:
//app.js
require('./mymodule.js')
I added './' because it is a module of one file. We will cover it later.
Now if you do for example:
var mymodule = require('./mymodule.js');
console.log(mymodule); // 3
You can replace the number 3, with a function, for example:
//mymodule.js:
module.exports = function () {
console.log('function inside the module');
};
Then you can use it:
var mymodule = require('./mymodule.js');
mymodule();
Private variables:
Every variable you define inside A module will be defined only inside it:
//mymodule.js
var myPrivateVariable = 3;
publicVariable = 5; // Never user global variables in modules
//It's bad-pracrtice. Always add: var.
module.exports = function() {
// Every function of the module can use the private variables
return myPrivateVariable++
};
//app.js
var mymodule = require('./mymodule.js');
console.log(mymodule()); // return 3
console.log(mymodule()); // return 4
Reuse modules:
One more thing you need to know about NodeJS modules, is that if you use the same module twice(require it), it will return the same instance, it will not run in twice.
for example:
//app.js
var mymodule1 = require('./mymodule.js');
var mymodule2 = require('./mymodule.js');
console.log(mymodule1()); //return 3
console.log(mymodule2()); //return 4 (not 3)
console.log(mymodule1()); //return 5
As you see in the example below, that private variable is shared between all the instances of the module.
A module package
If your module contain more than one file, or you want to share the module with others, you have to create the module in separate folder, and create a package.json file for the module.
npm init will create package.json file for you.
For modules, there are 3 required parts:
package.json
{
"name" : "You module name",
"version" : "0.0.3"
}
Now, you can publish the module, using npm publish. I recommend you publish all your modules to github as well, then the module will be connected to your github page.
What you publish to NPM will be accessible by everyone. So never publish modules that contain private data. For that you can use private npm modules.
Next steps
Modules can return more than one function or one variable. See this samples in which we return an object.
module.exports.a = function() {
// ..
};
module.exports.b = function() {
// ..
};
// OR
myObj = {
a:3,
b:function() {
return this.a;
}
};
module.exports = myObj;
More info:
Read about package.json files
Versioning in you modules best practice
More best practive for NodeJS modules
Private modules, using private npm
Related Questions:
What is the purpose of Node.js module.exports and how do you use it?
module.exports vs exports in Node.js
Creating module in node.js is pretty simple!!!
You may consider module as a set of functionalities you can use in other code by simply just requiring it.
for eg:Consider a file functional.js having the content:
function display(){
console.log('i am in a display function');
}
module.exports = display;
Now just require it in any other module like:
var display = require('./functional');
display()
Output:i am in a display function
Similarly you can do:
var exports = module.exports = {};
exports.display = function(){
console.log('i am in the display function');
}
or you do the same for objects like:
var funObj = {
hello:function(){
console.log('hello function');
},
display:function(){
console.log('display function');
}
};
module.exports = funObj;
There are two main ways for wiring modules. One of them is using hard coded dependencies, explicitly loading one module into another using a require call. The other method is to use a dependency injection pattern, where we pass the components as a parameter or we have a global container (known as IoC, or Inversion of Control container), which centralizes the management of the modules.
We can allow Node.js to manage the modules life cycle by using hard coded module loading. It organizes your packages in an intuitive way, which makes understanding and debugging easy.
Dependency Injection is rarely used in a Node.js environment, although it is a useful concept. The DI pattern can result in an improved decoupling of the modules. Instead of explicitly defining dependencies for a module, they are received from the outside. Therefore they can be easily replaced with modules having the same interfaces.
Let’s see an example for DI modules using the factory pattern:
class Car {
constructor (options) {
this.engine = options.engine
}
start () {
this.engine.start()
}
}
function create (options) {
return new Car(options)
}
module.exports = create

requirejs execute require module again

f.e. i have:
require( ['module1'], function( module1_callback){
//callback_1 after code is loaded
} );
and module1.js
define( ['module2'], function(module2_callback)
{
//function_1 to perform something
return 'something';
});
i need module1 on demand but i need to run function_1 everytime i requre that module,
in this case function_1 in module1 is executed only on first load but i need that routine every time i require module1. only return callback is executed
This is not the way requirejs works. But you can return a function that will perform something and then return something:
define( ['module2'], function(module2_callback) {
return function() {
//to perform something
return 'something';
}
});
and in your base module:
require( ['module1'], function( module1_callback){
var something = module1_callback();
});
retrieving functions introduces more complexity and it is not working in some cases with backbone plugins and circular dependencies especialy on large 1page app where some parts of the page needs to be reinitialized from scratch,
i endup using magic modules
https://github.com/jrburke/requirejs/wiki/Differences-between-the-simplified-CommonJS-wrapper-and-standard-AMD-define#wiki-magic
and undef
define( ['module2', 'module'], function(module2_callback) {
//push module id into global array
window.undefArr.push(module);
//all code here will be executed on every require
});
and
//before require undef modules
//here you can control which modules undef which to leave in memory
//based on module properties like path, name, status etc.
_.each( window.undefArr, function(mod){
requirejs.undef(mod.id);
});
//init undefArr
undefArr = [];
require( ['module1']);

Can I load multiple files with one require statement?

maybe this question is a little silly, but is it possible to load multiple .js files with one require statement? like this:
var mylib = require('./lib/mylibfiles');
and use:
mylib.foo(); //return "hello from one"
mylib.bar(): //return "hello from two"
And in the folder mylibfiles will have two files:
One.js
exports.foo= function(){return "hello from one";}
Two.js
exports.bar= function(){return "hello from two";}
I was thinking to put a package.json in the folder that say to load all the files, but I don't know how. Other aproach that I was thinking is to have a index.js that exports everything again but I will be duplicating work.
Thanks!!
P.D: I'm working with nodejs v0.611 on a windows 7 machine
First of all using require does not duplicate anything. It loads the module and it caches it, so calling require again will get it from memory (thus you can modify module at fly without interacting with its source code - this is sometimes desirable, for example when you want to store db connection inside module).
Also package.json does not load anything and does not interact with your app at all. It is only used for npm.
Now you cannot require multiple modules at once. For example what will happen if both One.js and Two.js have defined function with the same name?? There are more problems.
But what you can do, is to write additional file, say modules.js with the following content
module.exports = {
one : require('./one.js'),
two : require('./two.js'),
/* some other modules you want */
}
and then you can simply use
var modules = require('./modules.js');
modules.one.foo();
modules.two.bar();
I have a snippet of code that requires more than one module, but it doesn't clump them together as your post suggests. However, that can be overcome with a trick that I found.
function requireMany () {
return Array.prototype.slice.call(arguments).map(function (value) {
try {
return require(value)
}
catch (event) {
return console.log(event)
}
})
}
And you use it as such
requireMany("fs", "socket.io", "path")
Which will return
[ fs {}, socketio {}, path {} ]
If a module is not found, an error will be sent to the console. It won't break the programme. The error will be shown in the array as undefined. The array will not be shorter because one of the modules failed to load.
Then you can bind those each of those array elements to a variable name, like so:
var [fs, socketio, path] = requireMany("fs", "socket.io", "path")
It essentially works like an object, but assigns the keys and their values to the global namespace. So, in your case, you could do:
var [foo, bar] = requireMany("./foo.js", "./bar.js")
foo() //return "hello from one"
bar() //return "hello from two"
And if you do want it to break the programme on error, just use this modified version, which is smaller
function requireMany () {
return Array.prototype.slice.call(arguments).map(require)
}
Yes, you may require a folder as a module, according to the node docs. Let's say you want to require() a folder called ./mypack/.
Inside ./mypack/, create a package.json file with the name of the folder and a main javascript file with the same name, inside a ./lib/ directory.
{
"name" : "mypack",
"main" : "./lib/mypack.js"
}
Now you can use require('./mypack') and node will load ./mypack/lib/mypack.js.
However if you do not include this package.json file, it may still work. Without the file, node will attempt to load ./mypack/index.js, or if that's not there, ./mypack/index.node.
My understanding is that this could be beneficial if you have split your program into many javascript files but do not want to concatenate them for deployment.
You can use destructuring assignment to map an array of exported modules from require statements in one line:
const requires = (...modules) => modules.map(module => require(module));
const [fs, path] = requires('fs', 'path');
I was doing something similar to what #freakish suggests in his answer with a project where I've a list of test scripts that are pulled into a Puppeteer + Jest testing setup. My test files follow the naming convention testname1.js - testnameN.js and I was able use a generator function to require N number of files from the particular directory with the approach below:
const fs = require('fs');
const path = require('path');
module.exports = class FilesInDirectory {
constructor(directory) {
this.fid = fs.readdirSync(path.resolve(directory));
this.requiredFiles = (this.fid.map((fileId) => {
let resolvedPath = path.resolve(directory, fileId);
return require(resolvedPath);
})).filter(file => !!file);
}
printRetrievedFiles() {
console.log(this.requiredFiles);
}
nextFileGenerator() {
const parent = this;
const fidLength = parent.requiredFiles.length;
function* iterate(index) {
while (index < fidLength) {
yield parent.requiredFiles[index++];
}
}
return iterate(0);
}
}
Then use like so:
//Use in test
const FilesInDirectory = require('./utilities/getfilesindirectory');
const StepsCollection = new FilesInDirectory('./test-steps');
const StepsGenerator = StepsCollection.nextFileGenerator();
//Assuming we're in an async function
await StepsGenerator.next().value.FUNCTION_REQUIRED_FROM_FILE(someArg);

Resources