Can anyone show a simple implementation or usage example of a tf-idf algorithm in Smalltalk for natural language processing?
I've found an implementation in a package called NaturalSmalltalk, but it seems too complicated for my needs. A simple implementation in Python is like this one.
I've noticed there is another tf-idf in Hapax, but it seems related to analysis of software systems vocabularies, and I didn't found examples of how to use it.
I am the author of the original Hapax package for Visualworks. Hapax is a general purpose information retrieval package, it should be able to work with any kind of text files. I just happens so that I used to use it to analyze source code files.
The class that you are looking for is TermDocumentMatrix, there should be two methods globalWeighting: and localWeighting: to which you pass instances of InverseDocumentFrequency and either LogTermFrequency or TermFrequency depending on your needs. Typically when referring to tfidf people mean it to include logarithmic term frequencies.
There should best tests demonstrating the TDM class using a small example corpus. If the tests have not been ported to Squeak, please let me know so I can provide you with an example.
TextLint is a system based on PetitParser to parse and match patterns in natural language. It doens't provide what you ask for, but it shouldn't be too difficult to extend the model to compute word frequencies.
Related
I want to use Dynamic Topic Modeling by Blei et al. (http://www.cs.columbia.edu/~blei/papers/BleiLafferty2006a.pdf) for a large corpus of nearly 3800 patent documents.
Does anybody has experience in using the DTM in the gensim package?
I identified two models:
models.ldaseqmodel – Dynamic Topic Modeling in Python Link
models.wrappers.dtmmodel – Dynamic Topic Models (DTM) Link
Which one did you use, of if you used both, which one is "better"? In better words, which one did/do you prefer?
Both packages work fine, and are pretty much functionally identical. Which one you might want to use depends on your use case. There are small differences in the functions each model comes with, and small differences in the naming, which might be a little confusing, but for most DTM use cases, it does not matter very much which you pick.
Are the model outputs identical?
Not exactly. They are however very, very close to being identical (98%+) - I believe most of the differences come from slightly different handling of the probabilities in the generative process. So far, I've not yet come across a case where a difference in the sixth or seventh digit after the decimal point has any significant meaning. Interpreting the topics your models finds matters much more than one version finding a higher topic loading for some word by 0.00002
The big difference between the two models: dtmmodel is a python wrapper for the original C++ implementation from blei-lab, which means python will run the binaries, while ldaseqmodel is fully written in python.
Why use dtmmodel?
the C++ code is faster than the python implementation
supports the Document Influence Model from Gerrish/Blei 2010 (potentially interesting for your research, see this paper for an implementation.
Why use ldaseqmodel?
easier to install (simple import statement vs downloading binaries)
can use sstats from a pretrained LDA model - useful with LdaMulticore
easier to understand the workings of the code
I mostly use ldaseqmodel but thats for convenience. Native DIM support would be great to have, though.
What should you do?
Try each of them out, say, on a small sample set and see what the models return. 3800 documents isn't a huge corpus (assuming the patents aren't hundreds of pages each), and I assume that after preprocessing (removing stopwords, images and metadata) your dictionary won't be too large either (lots of standard phrases and legalese in patents, I'd assume). Pick the one that works best for you or has the capabilities you need.
Full analysis might take hours anyway, if you let your code run overnight there is little practical difference, after all, do you care if it finishes at 3am or 5am? If runtime is critical, I would assume the dtmmodel will be more useful.
For implementation examples, you might want to take a look at these notebooks: ldaseqmodel and dtmmodel
Are there any tools that analyze the meaning of given sentences? Recommendations are greatly appreciated.
Thanks in advance!
I am also looking for similar tools. One thing I found recently was this sentiment analysis tool built by researchers at Stanford.
It provides a model of analyzing the sentiment of a given sentence. It's interesting and even this seemingly simple idea is quite involved to model in an accurate way. It utilizes machine learning to develop higher accuracy as well. There is a live demo where you can input sentences to analyze.
http://nlp.stanford.edu/sentiment/
I also saw this RelEx semantic dependency relationship extractor.
http://wiki.opencog.org/w/Sentence_algorithms
Some natural language understanding tools can analyze the meaning of sentences, including NLTK and Attempto Controlled English. There are several implementations of discourse representation structures and semantic parsers with a similar purpose.
There are also several parsers that can be used to generate a meaning representation from the text that is being parsed.
I am looking for a tool that can analyze the emotion of short texts. I searched for a week and I couldn't find a good one that is publicly available. The ideal tool is one that takes a short text as input and guesses the emotion. It is preferably a standalone application or library.
I don't need tools that is trained by texts. And although similar questions are asked before no satisfactory answers are got.
I searched the Internet and read some papers but I can't find a good tool I want. Currently I found SentiStrength, but the accuracy is not good. I am using emotional dictionaries right now. I felt that some syntax parsing may be necessary but it's too complex for me to build one. Furthermore, it's researched by some people and I don't want to reinvent the wheels. Does anyone know such publicly/research available software? I need a tool that doesn't need training before using.
Thanks in advance.
I think that you will not find a more accurate program than SentiStrength (or SoCal) for this task - other than machine learning methods in a specific narrow domain. If you have a lot (>1000) of hand-coded data for a specific domain then you might like to try a generic machine learning approach based on your data. If not, then I would stop looking for anything better ;)
Identifying entities and extracting precise information from short texts, let alone sentiment, is a very challenging problem specially with short text because of lack of context. Hovewer, there are few unsupervised approaches to extracting sentiments from texts mainly proposed by Turney (2000). Look at that and may be you can adopt the method of extracting sentiments based on adjectives in the short text for your use-case. It is hovewer important to note that this might require you to efficiently POSTag your short text accordingly.
Maybe EmoLib could be of help.
Situation:
I wish to perform a Deep-level Analysis of a given text, which would mean:
Ability to extract keywords and assign importance levels based on contextual usage.
Ability to draw conclusions on the mood expressed.
Ability to hint on the education level (word does this a little bit though, but something more automated)
Ability to mix-and match phrases and find out certain communication patterns
Ability to draw substantial meaning out of it, so that it can be quantified and can be processed for answering by a machine.
Question:
What kind of algorithms and techniques need to be employed for this?
Is there a software that can help me in doing this?
When you figure out how to do this please contact DARPA, the CIA, the FBI, and all other U.S. intelligence agencies. Contracts for projects like these are items of current research worth many millions in research grants. ;)
That being said you'll need to process it in layers and analyze at each of those layers. For items 2 and 3 you'll find training an SVM on n-tuples (try, 3) words will help. For 1 and 4 you'll want deeper analysis. Use a tool like NLTK, or one of the many other parsers and find the subject words in sentences and related words. Also use WordNet (from Princeton)
to find the most common senses used and take those as key words.
5 is extremely challenging, I think intelligent use of the data above can give you what you want, but you'll need to use all your grammatical knowledge and programming knowledge, and it will still be very rough grained.
It sounds like you might be open to some experimentation, in which case a toolkit approach might be best? If so, look at the NLTK Natural Language Toolkit for Python. Open source under the Apache license, and there are a couple of excellent books about it (including one from O'Reilly which is also released online under a creative commons license).
I need your help in determining the best approach for analyzing industry-specific sentences (i.e. movie reviews) for "positive" vs "negative". I've seen libraries such as OpenNLP before, but it's too low-level - it just gives me the basic sentence composition; what I need is a higher-level structure:
- hopefully with wordlists
- hopefully trainable on my set of data
Thanks!
What you are looking for is commonly dubbed Sentiment Analysis. Typically, sentiment analysis is not able to handle delicate subtleties, like sarcasm or irony, but it fares pretty well if you throw a large set of data at it.
Sentiment analysis usually needs quite a bit of pre-processing. At least tokenization, sentence boundary detection and part-of-speech tagging. Sometimes, syntactic parsing can be important. Doing it properly is an entire branch of research in computational linguistics, and I wouldn't advise you with coming up with your own solution unless you take your time to study the field first.
OpenNLP has some tools to aid sentiment analysis, but if you want something more serious, you should look into the LingPipe toolkit. It has some built-in SA-functionality and a nice tutorial. And you can train it on your own set of data, but don't think that it is entirely trivial :-).
Googling for the term will probably also give you some resources to work with. If you have any more specific question, just ask, I'm watching the nlp-tag closely ;-)
Some approaches to sentiment analysis use strategies popular on other text classification tasks. The most common being transforming your film review into a word vector, and feeding it into a classifier algorithm as training data. Most popular data mining packages can help you here. You could have a look at this tutorial on sentiment classification illustrating how to do an experiment using the open source RapidMiner toolkit.
Incidentally, there is a good data set made available for research purposes related to detecting opinion on film reviews. It is based on IMDB user reviews, and you can check many related research work on the area and how they use the data set.
Its worth bearing in mind that the effectiveness of these methods can only be judged from a statistical viewpoint, so you can pretty much assume there will be misclassifications and cases where opinion is hard to detect. As already noticed in this thread, detecting things like irony and sarcasm can be very difficult indeed.