Name of variable passed to function in bash - linux

Is there a way in bash to understand the name of a variable that's passed to it?
Example:
var1=file1.txt
err_var=errorfile.txt
function func1 {
echo "func1: name of the variable is: " $1
echo "func1: value of variable is: " $1
echo
if [ ! -e $var1 ]
then
$1 = $err_val #is this even possible?
fi
func2 $1
}
function func2 {
echo "func2: name of the variable is: " $1
echo "func2: value of variable is: " $1
echo
}
func1 $var1
func1 $err_var
I was hoping to get the following output if file1.txt exists:
func1: name of the variable is: var1
func1: value of variable is: file1.txt
func2: name of the variable is: var1
func2: value of variable is: file1.txt
And when file1.txt does not exist:
func1: name of the variable is: var1
func1: value of variable is: file1.txt
func2: name of the variable is: err_var
func2: value of variable is: errorfile.txt
Any ideas?

No, the variable is expanded before the function sees it. The function only sees the value, not the variable name.
If you pass the variable name unexpanded and without the dollar sign, you can use indirection.
get_it () {
echo "${!1}"
}
Demo:
$ foo=bar
$ baz=qux
$ get_it foo
bar
$ get_it baz
qux

Like Dennis said, once you've expanded the variable using the dollar-sign, your function no longer has a way to get the variable name. But I think you also asked about a way to set the variable's value, and that part hasn't been answered yet. There are some non-portable ways to do that, like with declare -n (Google that if you're interested), but my answer is going to stick to a universal solution.
I'm a C++ programmer, so I like to mimic the "getter and setter" philosophy, where you use tiny little functions to get and set the value of a variable. The downside to using getters and setters is that you need to create a function (or two functions) for every value you want to manage. So... I made a "factory function" that handles creating getters/setters for you:
makeGetSet() {
. /dev/fd/0 <<END_FUNC
${1}Val() { [ "\${1}" ] && ${1}="\${1}" || echo "\${${1}}"; }
END_FUNC
}
It does not require any particular shell with special features like indirection or namerefs, or the declare utility. No eval, no aliases, just 100% POSIX. You just pass in your variable name to makeGetSet, and your getter/setter function has that same name with a "Val" at the end (e.g. myVariableVal). Tested with bash and dash. You're free to continue using the "normal" shell ways to read/write to your variable in combination with my function.
Usage:
Setup: makeGetSet myVariable
Set: myVariableVal newValue
Get: anotherVariable="`myVariableVal`"
Print: myVariableVal
I wasn't sure about a couple parts of your script, so I took some educated guesses. Where you have if [ ! -e $var1 ], I think you meant if [ ! -e $1 ]. And at the end, where you call the functions, you had func1 $var1 and func1 $err_var, but I think you meant to just use func1 $var1 or have a third variable. It looks like $err_var is a "default value for errors" rather than something you'd give as input, but maybe I'm not following your idea.
So my answer to your question would look like:
var1=file1.txt; makeGetSet var1
err_var=errorfile.txt; makeGetSet err_var
function func1 {
echo "func1: name of the variable is: " ${1%Val}
echo "func1: value of variable is: " `${1}`
echo
# Shorter than if..fi
[ ! -e `${1}` ] && ${1} ${err_val}
func2 ${1}
}
function func2 {
echo "func2: name of the variable is: " ${1%Val}
echo "func2: value of variable is: " `${1}`
echo
}
func1 ${var1}

Related

Assigning one variable to another in Bash?

I have a doubt. When i declare a value and assign to some variable, I don't know how to reassign the same value to another variable. See the code snippet below.
#/bin/sh
#declare ARG1 to a
a=ARG1
#declaring $a to ARG2
ARG2=$`$a`
echo "ARG 2 = $ARG2"
It should display my output as
ARG 2 = ARG1
...but instead the actual output is:
line 5: ARG1: command not found
ARG 2 = $
To assign the value associated with the variable dest to the variable source, you need simply run dest=$source.
For example, to assign the value associated with the variable arg2 to the variable a:
a=ARG1
arg2=$a
echo "ARG 2 = $arg2"
The use of lower-case variable names for local shell variables is by convention, not necessity -- but this has the advantage of avoiding conflicts with environment variables and builtins, both of which use all-uppercase names by convention.
You may also want to alias rather than copy the variable. For example, if you need mutation. Or if you want to run a function multiple times on different variables. Here's how it works
Example:
C=cat
declare -n VAR=C
VAR+=" says Hi"
echo "$C" # prints "cat says Hi"
Example with arrays/dictionaries:
A=(a a a)
declare -n VAR=A # "-n" stands for "name", e.g. a new name for the same variable
VAR+=(b)
echo "${A[#]}" # prints "a a a b"
That is, VAR becomes effectively the same as the original variable. Instead of copying, you're adding an alias. Here's an example with functions:
function myFunc() {
local -n VAR="$1"
VAR="Hello from $2"
echo "I've set variable '$1' to value '$VAR'"
}
myFunc Inbox Bob # I've set variable 'Inbox' to value 'Hello from Bob'
myFunc Luke Leia # I've set variable 'Luke' to value 'Hello from Leia'
echo "$Luke" # Hello from Leia
Whether you should use these approaches is a question. Generally, immutable code is easier to read and to reason about (in almost any programming language). However, sometimes you really need to get stuff done in a certain way. Hope this answer helps you then.

shell script function return a string

I am new to shell scripts, I am trying to create a simple function which will return the concatenated two strings that are passed as parameters. I tried with below code
function getConcatenatedString() {
echo "String1 $1"
echo "String2 $2"
str=$1/$2
echo "Concatenated String ${str}"
echo "${str}"
}
//I am calling the above function
constr=$(getConcatenatedString "hello" "world")
echo "printing result"
echo "${constr}"
echo "exit"
I see the below output when running the script with above code,
printing result
String1 hello
String2 world
Concatenated String hello/world
hello/world
exit
If you look at the code I am first calling the function and then I am echoing "printing result" statement, but the result is first comes the "printing result" and echos the statement inside the function. Is the below statement calling the function
constr=$(getConcatenatedString "hello" "world")
or
echo ${constr}
is calling the function ?
Because if I comment out #echo ${constr} then nothing is getting echoed !!! Please clarify me.
The first is calling the function and storing all of the output (four echo statements) into $constr.
Then, after return, you echo the preamble printing result, $constr (consisting of four lines) and the exit message.
That's how $() works, it captures the entire standard output from the enclosed command.
It sounds like you want to see some of the echo statements on the console rather than capturing them with the $(). I think you should just be able to send them to standard error for that:
echo "String1 $1" >&2
paxdiablo's solution is correct. You cannot return a string from a function, but you can capture the output of the function or return an integer value that can be retrieved by the caller from $?. However, since all shell variables are global, you can simply do:
getConcatenatedString() { str="$1/$2"; }
getConcatenatedString hello world
echo "Concatenated String ${str}"
Note that the function keyword is redundant with (), but function is less portable.
A more flexible, but slightly harder to understand approach is to pass a variable name, and use eval so that the variable becomes set in the caller's context (either a global or a function local). In bash:
function mylist()
{
local _varname=$1 _p _t
shift
for _p in "$#"; do
_t=$_t[$_p]
done
eval "$_varname=\$_t"
}
mylist tmpvar a b c
echo "result: $tmpvar"
On my Linux desktop (bash-3.2) it's approx 3-5x faster (10,000 iterations) than using ``, since the latter has process creation overheads.
If you have bash-4.2, its declare -g allows a function to set a global variable, so you can replace the unpretty eval with:
declare -g $_varname="$_t"
The eval method is similar to TCL's upvar 1, and declare -g is similar to upvar #0.
Some shell builtins support something similar, like bash's printf with "-v", again saving process creation by assigning directly to a variable instead of capturing output (~20-25x faster for me).

How to return data from a bash shell script subroutine?

Given the following two executable scripts:
----- file1.sh
#!/bin/sh
. file2.sh
some_routine data
----- file2.sh
#!/bin/sh
some_routine()
{
#get the data passed in
localVar=$1
}
I can pass 'data' to a subroutine in another script, but I would also like to return data.
Is it possible to return information from some_routine?
e.g: var = some_routine data
Have the subroutine output something, and then use $() to capture the output:
some_routine() {
echo "foo $1"
}
some_var=$(some_routine bar)
It's not allowed, just set the value of a global variable (..all variables are global in bash)
if
some_routine() {
echo "first"
echo "foo $1"
}
some_var=$(some_routine "second")
echo "result: $some_var"
they are ok.But the result seems to be decided by the first "echo".Another way is use "eval".
some_var return "first"
some_routine()
{
echo "cmj"
eval $2=$1
}
some_routine "second" some_var
echo "result: $some_var"
in this way, some_var return "second".The bash don't return a string directly.So we need some tricks.

How to return a string value from a Bash function

I'd like to return a string from a Bash function.
I'll write the example in java to show what I'd like to do:
public String getSomeString() {
return "tadaa";
}
String variable = getSomeString();
The example below works in bash, but is there a better way to do this?
function getSomeString {
echo "tadaa"
}
VARIABLE=$(getSomeString)
There is no better way I know of. Bash knows only status codes (integers) and strings written to the stdout.
You could have the function take a variable as the first arg and modify the variable with the string you want to return.
#!/bin/bash
set -x
function pass_back_a_string() {
eval "$1='foo bar rab oof'"
}
return_var=''
pass_back_a_string return_var
echo $return_var
Prints "foo bar rab oof".
Edit: added quoting in the appropriate place to allow whitespace in string to address #Luca Borrione's comment.
Edit: As a demonstration, see the following program. This is a general-purpose solution: it even allows you to receive a string into a local variable.
#!/bin/bash
set -x
function pass_back_a_string() {
eval "$1='foo bar rab oof'"
}
return_var=''
pass_back_a_string return_var
echo $return_var
function call_a_string_func() {
local lvar=''
pass_back_a_string lvar
echo "lvar='$lvar' locally"
}
call_a_string_func
echo "lvar='$lvar' globally"
This prints:
+ return_var=
+ pass_back_a_string return_var
+ eval 'return_var='\''foo bar rab oof'\'''
++ return_var='foo bar rab oof'
+ echo foo bar rab oof
foo bar rab oof
+ call_a_string_func
+ local lvar=
+ pass_back_a_string lvar
+ eval 'lvar='\''foo bar rab oof'\'''
++ lvar='foo bar rab oof'
+ echo 'lvar='\''foo bar rab oof'\'' locally'
lvar='foo bar rab oof' locally
+ echo 'lvar='\'''\'' globally'
lvar='' globally
Edit: demonstrating that the original variable's value is available in the function, as was incorrectly criticized by #Xichen Li in a comment.
#!/bin/bash
set -x
function pass_back_a_string() {
eval "echo in pass_back_a_string, original $1 is \$$1"
eval "$1='foo bar rab oof'"
}
return_var='original return_var'
pass_back_a_string return_var
echo $return_var
function call_a_string_func() {
local lvar='original lvar'
pass_back_a_string lvar
echo "lvar='$lvar' locally"
}
call_a_string_func
echo "lvar='$lvar' globally"
This gives output:
+ return_var='original return_var'
+ pass_back_a_string return_var
+ eval 'echo in pass_back_a_string, original return_var is $return_var'
++ echo in pass_back_a_string, original return_var is original return_var
in pass_back_a_string, original return_var is original return_var
+ eval 'return_var='\''foo bar rab oof'\'''
++ return_var='foo bar rab oof'
+ echo foo bar rab oof
foo bar rab oof
+ call_a_string_func
+ local 'lvar=original lvar'
+ pass_back_a_string lvar
+ eval 'echo in pass_back_a_string, original lvar is $lvar'
++ echo in pass_back_a_string, original lvar is original lvar
in pass_back_a_string, original lvar is original lvar
+ eval 'lvar='\''foo bar rab oof'\'''
++ lvar='foo bar rab oof'
+ echo 'lvar='\''foo bar rab oof'\'' locally'
lvar='foo bar rab oof' locally
+ echo 'lvar='\'''\'' globally'
lvar='' globally
All answers above ignore what has been stated in the man page of bash.
All variables declared inside a function will be shared with the calling environment.
All variables declared local will not be shared.
Example code
#!/bin/bash
f()
{
echo function starts
local WillNotExists="It still does!"
DoesNotExists="It still does!"
echo function ends
}
echo $DoesNotExists #Should print empty line
echo $WillNotExists #Should print empty line
f #Call the function
echo $DoesNotExists #Should print It still does!
echo $WillNotExists #Should print empty line
And output
$ sh -x ./x.sh
+ echo
+ echo
+ f
+ echo function starts
function starts
+ local 'WillNotExists=It still does!'
+ DoesNotExists='It still does!'
+ echo function ends
function ends
+ echo It still 'does!'
It still does!
+ echo
Also under pdksh and ksh this script does the same!
Bash, since version 4.3, feb 2014(?), has explicit support for reference variables or name references (namerefs), beyond "eval", with the same beneficial performance and indirection effect, and which may be clearer in your scripts and also harder to "forget to 'eval' and have to fix this error":
declare [-aAfFgilnrtux] [-p] [name[=value] ...]
typeset [-aAfFgilnrtux] [-p] [name[=value] ...]
Declare variables and/or give them attributes
...
-n Give each name the nameref attribute, making it a name reference
to another variable. That other variable is defined by the value
of name. All references and assignments to name, except for⋅
changing the -n attribute itself, are performed on the variable
referenced by name's value. The -n attribute cannot be applied to
array variables.
...
When used in a function, declare and typeset make each name local,
as with the local command, unless the -g option is supplied...
and also:
PARAMETERS
A variable can be assigned the nameref attribute using the -n option to the
declare or local builtin commands (see the descriptions of declare and local
below) to create a nameref, or a reference to another variable. This allows
variables to be manipulated indirectly. Whenever the nameref variable is⋅
referenced or assigned to, the operation is actually performed on the variable
specified by the nameref variable's value. A nameref is commonly used within
shell functions to refer to a variable whose name is passed as an argument to⋅
the function. For instance, if a variable name is passed to a shell function
as its first argument, running
declare -n ref=$1
inside the function creates a nameref variable ref whose value is the variable
name passed as the first argument. References and assignments to ref are
treated as references and assignments to the variable whose name was passed as⋅
$1. If the control variable in a for loop has the nameref attribute, the list
of words can be a list of shell variables, and a name reference will be⋅
established for each word in the list, in turn, when the loop is executed.
Array variables cannot be given the -n attribute. However, nameref variables
can reference array variables and subscripted array variables. Namerefs can be⋅
unset using the -n option to the unset builtin. Otherwise, if unset is executed
with the name of a nameref variable as an argument, the variable referenced by⋅
the nameref variable will be unset.
For example (EDIT 2: (thank you Ron) namespaced (prefixed) the function-internal variable name, to minimize external variable clashes, which should finally answer properly, the issue raised in the comments by Karsten):
# $1 : string; your variable to contain the return value
function return_a_string () {
declare -n ret=$1
local MYLIB_return_a_string_message="The date is "
MYLIB_return_a_string_message+=$(date)
ret=$MYLIB_return_a_string_message
}
and testing this example:
$ return_a_string result; echo $result
The date is 20160817
Note that the bash "declare" builtin, when used in a function, makes the declared variable "local" by default, and "-n" can also be used with "local".
I prefer to distinguish "important declare" variables from "boring local" variables, so using "declare" and "local" in this way acts as documentation.
EDIT 1 - (Response to comment below by Karsten) - I cannot add comments below any more, but Karsten's comment got me thinking, so I did the following test which WORKS FINE, AFAICT - Karsten if you read this, please provide an exact set of test steps from the command line, showing the problem you assume exists, because these following steps work just fine:
$ return_a_string ret; echo $ret
The date is 20170104
(I ran this just now, after pasting the above function into a bash term - as you can see, the result works just fine.)
Like bstpierre above, I use and recommend the use of explicitly naming output variables:
function some_func() # OUTVAR ARG1
{
local _outvar=$1
local _result # Use some naming convention to avoid OUTVARs to clash
... some processing ....
eval $_outvar=\$_result # Instead of just =$_result
}
Note the use of quoting the $. This will avoid interpreting content in $result as shell special characters. I have found that this is an order of magnitude faster than the result=$(some_func "arg1") idiom of capturing an echo. The speed difference seems even more notable using bash on MSYS where stdout capturing from function calls is almost catastrophic.
It's ok to send in a local variables since locals are dynamically scoped in bash:
function another_func() # ARG
{
local result
some_func result "$1"
echo result is $result
}
You could also capture the function output:
#!/bin/bash
function getSomeString() {
echo "tadaa!"
}
return_var=$(getSomeString)
echo $return_var
# Alternative syntax:
return_var=`getSomeString`
echo $return_var
Looks weird, but is better than using global variables IMHO. Passing parameters works as usual, just put them inside the braces or backticks.
The most straightforward and robust solution is to use command substitution, as other people wrote:
assign()
{
local x
x="Test"
echo "$x"
}
x=$(assign) # This assigns string "Test" to x
The downside is performance as this requires a separate process.
The other technique suggested in this topic, namely passing the name of a variable to assign to as an argument, has side effects, and I wouldn't recommend it in its basic form. The problem is that you will probably need some variables in the function to calculate the return value, and it may happen that the name of the variable intended to store the return value will interfere with one of them:
assign()
{
local x
x="Test"
eval "$1=\$x"
}
assign y # This assigns string "Test" to y, as expected
assign x # This will NOT assign anything to x in this scope
# because the name "x" is declared as local inside the function
You might, of course, not declare internal variables of the function as local, but you really should always do it as otherwise you may, on the other hand, accidentally overwrite an unrelated variable from the parent scope if there is one with the same name.
One possible workaround is an explicit declaration of the passed variable as global:
assign()
{
local x
eval declare -g $1
x="Test"
eval "$1=\$x"
}
If name "x" is passed as an argument, the second row of the function body will overwrite the previous local declaration. But the names themselves might still interfere, so if you intend to use the value previously stored in the passed variable prior to write the return value there, be aware that you must copy it into another local variable at the very beginning; otherwise the result will be unpredictable!
Besides, this will only work in the most recent version of BASH, namely 4.2. More portable code might utilize explicit conditional constructs with the same effect:
assign()
{
if [[ $1 != x ]]; then
local x
fi
x="Test"
eval "$1=\$x"
}
Perhaps the most elegant solution is just to reserve one global name for function return values and
use it consistently in every function you write.
As previously mentioned, the "correct" way to return a string from a function is with command substitution. In the event that the function also needs to output to console (as #Mani mentions above), create a temporary fd in the beginning of the function and redirect to console. Close the temporary fd before returning your string.
#!/bin/bash
# file: func_return_test.sh
returnString() {
exec 3>&1 >/dev/tty
local s=$1
s=${s:="some default string"}
echo "writing directly to console"
exec 3>&-
echo "$s"
}
my_string=$(returnString "$*")
echo "my_string: [$my_string]"
executing script with no params produces...
# ./func_return_test.sh
writing directly to console
my_string: [some default string]
hope this helps people
-Andy
You could use a global variable:
declare globalvar='some string'
string ()
{
eval "$1='some other string'"
} # ---------- end of function string ----------
string globalvar
echo "'${globalvar}'"
This gives
'some other string'
To illustrate my comment on Andy's answer, with additional file descriptor manipulation to avoid use of /dev/tty:
#!/bin/bash
exec 3>&1
returnString() {
exec 4>&1 >&3
local s=$1
s=${s:="some default string"}
echo "writing to stdout"
echo "writing to stderr" >&2
exec >&4-
echo "$s"
}
my_string=$(returnString "$*")
echo "my_string: [$my_string]"
Still nasty, though.
The way you have it is the only way to do this without breaking scope. Bash doesn't have a concept of return types, just exit codes and file descriptors (stdin/out/err, etc)
Addressing Vicky Ronnen's head up, considering the following code:
function use_global
{
eval "$1='changed using a global var'"
}
function capture_output
{
echo "always changed"
}
function test_inside_a_func
{
local _myvar='local starting value'
echo "3. $_myvar"
use_global '_myvar'
echo "4. $_myvar"
_myvar=$( capture_output )
echo "5. $_myvar"
}
function only_difference
{
local _myvar='local starting value'
echo "7. $_myvar"
local use_global '_myvar'
echo "8. $_myvar"
local _myvar=$( capture_output )
echo "9. $_myvar"
}
declare myvar='global starting value'
echo "0. $myvar"
use_global 'myvar'
echo "1. $myvar"
myvar=$( capture_output )
echo "2. $myvar"
test_inside_a_func
echo "6. $_myvar" # this was local inside the above function
only_difference
will give
0. global starting value
1. changed using a global var
2. always changed
3. local starting value
4. changed using a global var
5. always changed
6.
7. local starting value
8. local starting value
9. always changed
Maybe the normal scenario is to use the syntax used in the test_inside_a_func function, thus you can use both methods in the majority of cases, although capturing the output is the safer method always working in any situation, mimicking the returning value from a function that you can find in other languages, as Vicky Ronnen correctly pointed out.
The options have been all enumerated, I think. Choosing one may come down to a matter of the best style for your particular application, and in that vein, I want to offer one particular style I've found useful. In bash, variables and functions are not in the same namespace. So, treating the variable of the same name as the value of the function is a convention that I find minimizes name clashes and enhances readability, if I apply it rigorously. An example from real life:
UnGetChar=
function GetChar() {
# assume failure
GetChar=
# if someone previously "ungot" a char
if ! [ -z "$UnGetChar" ]; then
GetChar="$UnGetChar"
UnGetChar=
return 0 # success
# else, if not at EOF
elif IFS= read -N1 GetChar ; then
return 0 # success
else
return 1 # EOF
fi
}
function UnGetChar(){
UnGetChar="$1"
}
And, an example of using such functions:
function GetToken() {
# assume failure
GetToken=
# if at end of file
if ! GetChar; then
return 1 # EOF
# if start of comment
elif [[ "$GetChar" == "#" ]]; then
while [[ "$GetChar" != $'\n' ]]; do
GetToken+="$GetChar"
GetChar
done
UnGetChar "$GetChar"
# if start of quoted string
elif [ "$GetChar" == '"' ]; then
# ... et cetera
As you can see, the return status is there for you to use when you need it, or ignore if you don't. The "returned" variable can likewise be used or ignored, but of course only after the function is invoked.
Of course, this is only a convention. You are free to fail to set the associated value before returning (hence my convention of always nulling it at the start of the function) or to trample its value by calling the function again (possibly indirectly). Still, it's a convention I find very useful if I find myself making heavy use of bash functions.
As opposed to the sentiment that this is a sign one should e.g. "move to perl", my philosophy is that conventions are always important for managing the complexity of any language whatsoever.
In my programs, by convention, this is what the pre-existing $REPLY variable is for, which read uses for that exact purpose.
function getSomeString {
REPLY="tadaa"
}
getSomeString
echo $REPLY
This echoes
tadaa
But to avoid conflicts, any other global variable will do.
declare result
function getSomeString {
result="tadaa"
}
getSomeString
echo $result
If that isn’t enough, I recommend Markarian451’s solution.
They key problem of any 'named output variable' scheme where the caller can pass in the variable name (whether using eval or declare -n) is inadvertent aliasing, i.e. name clashes: From an encapsulation point of view, it's awful to not be able to add or rename a local variable in a function without checking ALL the function's callers first to make sure they're not wanting to pass that same name as the output parameter. (Or in the other direction, I don't want to have to read the source of the function I'm calling just to make sure the output parameter I intend to use is not a local in that function.)
The only way around that is to use a single dedicated output variable like REPLY (as suggested by Evi1M4chine) or a convention like the one suggested by Ron Burk.
However, it's possible to have functions use a fixed output variable internally, and then add some sugar over the top to hide this fact from the caller, as I've done with the call function in the following example. Consider this a proof of concept, but the key points are
The function always assigns the return value to REPLY, and can also return an exit code as usual
From the perspective of the caller, the return value can be assigned to any variable (local or global) including REPLY (see the wrapper example). The exit code of the function is passed through, so using them in e.g. an if or while or similar constructs works as expected.
Syntactically the function call is still a single simple statement.
The reason this works is because the call function itself has no locals and uses no variables other than REPLY, avoiding any potential for name clashes. At the point where the caller-defined output variable name is assigned, we're effectively in the caller's scope (technically in the identical scope of the call function), rather than in the scope of the function being called.
#!/bin/bash
function call() { # var=func [args ...]
REPLY=; "${1#*=}" "${#:2}"; eval "${1%%=*}=\$REPLY; return $?"
}
function greet() {
case "$1" in
us) REPLY="hello";;
nz) REPLY="kia ora";;
*) return 123;;
esac
}
function wrapper() {
call REPLY=greet "$#"
}
function main() {
local a b c d
call a=greet us
echo "a='$a' ($?)"
call b=greet nz
echo "b='$b' ($?)"
call c=greet de
echo "c='$c' ($?)"
call d=wrapper us
echo "d='$d' ($?)"
}
main
Output:
a='hello' (0)
b='kia ora' (0)
c='' (123)
d='hello' (0)
You can echo a string, but catch it by piping (|) the function to something else.
You can do it with expr, though ShellCheck reports this usage as deprecated.
bash pattern to return both scalar and array value objects:
definition
url_parse() { # parse 'url' into: 'url_host', 'url_port', ...
local "$#" # inject caller 'url' argument in local scope
local url_host="..." url_path="..." # calculate 'url_*' components
declare -p ${!url_*} # return only 'url_*' object fields to the caller
}
invocation
main() { # invoke url parser and inject 'url_*' results in local scope
eval "$(url_parse url=http://host/path)" # parse 'url'
echo "host=$url_host path=$url_path" # use 'url_*' components
}
Although there were a lot of good answers, they all did not work the way I wanted them to. So here is my solution with these key points:
Helping the forgetful programmer
Atleast I would struggle to always remember error checking after something like this: var=$(myFunction)
Allows assigning values with newline chars \n
Some solutions do not allow for that as some forgot about the single quotes around the value to assign. Right way: eval "${returnVariable}='${value}'" or even better: see the next point below.
Using printf instead of eval
Just try using something like this myFunction "date && var2" to some of the supposed solutions here. eval will execute whatever is given to it. I only want to assign values so I use printf -v "${returnVariable}" "%s" "${value}" instead.
Encapsulation and protection against variable name collision
If a different user or at least someone with less knowledge about the function (this is likely me in some months time) is using myFunction I do not want them to know that he must use a global return value name or some variable names are forbidden to use. That is why I added a name check at the top of myFunction:
if [[ "${1}" = "returnVariable" ]]; then
echo "Cannot give the ouput to \"returnVariable\" as a variable with the same name is used in myFunction()!"
echo "If that is still what you want to do please do that outside of myFunction()!"
return 1
fi
Note this could also be put into a function itself if you have to check a lot of variables.
If I still want to use the same name (here: returnVariable) I just create a buffer variable, give that to myFunction and then copy the value returnVariable.
So here it is:
myFunction():
myFunction() {
if [[ "${1}" = "returnVariable" ]]; then
echo "Cannot give the ouput to \"returnVariable\" as a variable with the same name is used in myFunction()!"
echo "If that is still what you want to do please do that outside of myFunction()!"
return 1
fi
if [[ "${1}" = "value" ]]; then
echo "Cannot give the ouput to \"value\" as a variable with the same name is used in myFunction()!"
echo "If that is still what you want to do please do that outside of myFunction()!"
return 1
fi
local returnVariable="${1}"
local value=$'===========\nHello World\n==========='
echo "setting the returnVariable now..."
printf -v "${returnVariable}" "%s" "${value}"
}
Test cases:
var1="I'm not greeting!"
myFunction var1
[[ $? -eq 0 ]] && echo "myFunction(): SUCCESS" || echo "myFunction(): FAILURE"
printf "var1:\n%s\n" "${var1}"
# Output:
# setting the returnVariable now...
# myFunction(): SUCCESS
# var1:
# ===========
# Hello World
# ===========
returnVariable="I'm not greeting!"
myFunction returnVariable
[[ $? -eq 0 ]] && echo "myFunction(): SUCCESS" || echo "myFunction(): FAILURE"
printf "returnVariable:\n%s\n" "${returnVariable}"
# Output
# Cannot give the ouput to "returnVariable" as a variable with the same name is used in myFunction()!
# If that is still what you want to do please do that outside of myFunction()!
# myFunction(): FAILURE
# returnVariable:
# I'm not greeting!
var2="I'm not greeting!"
myFunction "date && var2"
[[ $? -eq 0 ]] && echo "myFunction(): SUCCESS" || echo "myFunction(): FAILURE"
printf "var2:\n%s\n" "${var2}"
# Output
# setting the returnVariable now...
# ...myFunction: line ..: printf: `date && var2': not a valid identifier
# myFunction(): FAILURE
# var2:
# I'm not greeting!
myFunction var3
[[ $? -eq 0 ]] && echo "myFunction(): SUCCESS" || echo "myFunction(): FAILURE"
printf "var3:\n%s\n" "${var3}"
# Output
# setting the returnVariable now...
# myFunction(): SUCCESS
# var3:
# ===========
# Hello World
# ===========
#Implement a generic return stack for functions:
STACK=()
push() {
STACK+=( "${1}" )
}
pop() {
export $1="${STACK[${#STACK[#]}-1]}"
unset 'STACK[${#STACK[#]}-1]';
}
#Usage:
my_func() {
push "Hello world!"
push "Hello world2!"
}
my_func ; pop MESSAGE2 ; pop MESSAGE1
echo ${MESSAGE1} ${MESSAGE2}
agt#agtsoft:~/temp$ cat ./fc
#!/bin/sh
fcall='function fcall { local res p=$1; shift; fname $*; eval "$p=$res"; }; fcall'
function f1 {
res=$[($1+$2)*2];
}
function f2 {
local a;
eval ${fcall//fname/f1} a 2 3;
echo f2:$a;
}
a=3;
f2;
echo after:a=$a, res=$res
agt#agtsoft:~/temp$ ./fc
f2:10
after:a=3, res=

Get a list of function names in a shell script [duplicate]

This question already has answers here:
How do I list the functions defined in my shell? [duplicate]
(8 answers)
Closed 4 years ago.
I have a Bourne Shell script that has several functions in it, and allows to be called in the following way:
my.sh <func_name> <param1> <param2>
Inside, func_name() will be called with param1 and param2.
I want to create a help function that would just list all available functions, even without parameters.
The question: how do I get a list of all function names in a script from inside the script?
I'd like to avoid having to parse it and look for function patterns. Too easy to get wrong.
Update: the code. Wanted my help() function be like main() - a function added to the code is added to the help automatically.
#!/bin/sh
# must work with "set -e"
foo ()
{
echo foo: -$1-$2-$3-
return 0
}
# only runs if there are parameters
# exits
main ()
{
local cmd="$1"
shift
local rc=0
$cmd "$#" || rc=$?
exit $rc
}
if [[ "$*" ]]
then
main "$#"
die "how did we get here?"
fi
You can get a list of functions in your script by using the grep command on your own script. In order for this approach to work, you will need to structure your functions a certain way so grep can find them. Here is a sample:
$ cat my.sh
#!/bin/sh
function func1() # Short description
{
echo func1 parameters: $1 $2
}
function func2() # Short description
{
echo func2 parameters: $1 $2
}
function help() # Show a list of functions
{
grep "^function" $0
}
if [ "_$1" = "_" ]; then
help
else
"$#"
fi
Here is an interactive demo:
$ my.sh
function func1() # Short description
function func2() # Short description
function help() # Show a list of functions
$ my.sh help
function func1() # Short description
function func2() # Short description
function help() # Show a list of functions
$ my.sh func1 a b
func1 parameters: a b
$ my.sh func2 x y
func2 parameters: x y
If you have "private" function that you don't want to show up in the help, then omit the "function" part:
my_private_function()
{
# Do something
}
typeset -f returns the functions with their bodies, so a simple awk script is used to pluck out the function names
f1 () { :; }
f2 () { :; }
f3 () { :; }
f4 () { :; }
help () {
echo "functions available:"
typeset -f | awk '/ \(\) $/ && !/^main / {print $1}'
}
main () { help; }
main
This script outputs:
functions available:
f1
f2
f3
f4
help
You call this function with no
arguments and it spits out a
"whitespace" separated list of
function names only.
function script.functions () {
local fncs=`declare -F -p | cut -d " " -f 3`; # Get function list
echo $fncs; # not quoted here to create shell "argument list" of funcs.
}
To load the functions into an array:
declare MyVar=($(script.functions));
Of course, common sense dictates that
any functions that haven't been
sourced into the current file before
this is called will not show up in the
list.
To Make the list read-only and
available for export to other scripts
called by this script:
declare -rx MyVar=($(script.functions));
To print the entire list as newline
separated:
printf "%s\n" "${MyVar[#]}";
The best thing to do is make an array (you are using bash) that contains functions that you want to advertise and have your help function iterate over and print them.
Calling set alone will produce the functions, but in their entirety. You'd still have to parse that looking for things ending in () to get the proverbial symbols.
Its also probably saner to use something like getopt to turn --function-name into function_name with arguments. But, well, sane is relative and you have not posted code :)
Your other option is to create a loadable for bash (a fork of set) that accomplishes this. Honestly, I'd prefer going with parsing before writing a loadable for this task.

Resources