Translation of 3D system - graphics

I have a single of x-y coordinate system

This diagram should represent what you've told me.
The key point, is to express [x2],[y2] in CS1. (I can't use latex here so let's assume that [A] means the vector A, |A| is the length of the vector A)
[v2] = v2x * [x2] + v2y * [y2]
Since we have well defined [v1] and [d2], we can calculate [x']
[x`] = [d2] - [v1]
From [x'] we can calculate x2
[x2] = (|x2|/|x'|)[x`] = (|x1|/|x'|)[x'] since |x1| = |x2|
From x2 we can calculate y2, although I don't remember how. It's a simple 90° rotation.
Should be this:
y2x = - x2y
y2y = x2x
Once we have expressed x2,y2 in CS1, we can compute v2
v2 = v2x * [x2] + v2y * [y2] = v2x * (x2x*[x1]+x2y*[y1]) + v2y * (y2x*[x1]+y2y*[y1])
= (v2xx2x + v2yy2x)[x1] + (v2xx2y + v2yy2y) [y1] // Hope I didn't make any mistake here :)
And finally
[X] = [v1] + [v2]
I think the best option is to create a vector class and do all the math using vector algebra. You just need to define 3 operation: Addition, ScalarMultiplication, 90Rotation.

Related

How can I scale a 2D rotation vector without trig functions?

I have a normalized 2D vector that I am using to rotate other 2D vectors. In one instance it indicates "spin" (or "angular momentum") and is used to rotate the "orientation" of a simple polygon. My vector class contains this method:
rotateByXY(x, y) {
let rotX = x * this.x - y * this.y;
let rotY = y * this.x + x * this.y;
this.x = rotX;
this.y = rotY;
}
So far, this is all efficient and uses no trig whatsoever.
However, I want the "spin" to decay over time. This means that the angle of the spin should tend towards zero. And here I'm at a loss as to how to do this without expensive trig calls like this:
let angle = Math.atan2(spin.y, spin.x);
angle *= SPIN_DECAY;
spin = new Vector2D(Math.cos(angle), Math.sin(angle));
Is there a better/faster way to accomplish this?
If it's really the trigonometric functions what is slowing down your computation, you might try to approximate them with their Taylor expansions.
For x close to zero the following identities hold:
cos(x) = 1 - (x^2)/2! + (x^4)/4! - (x^6)/6! + ...
sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...
atan(x) = x - (x^3)/3 + (x^5)/5 - (x^7)/7 + ...
Based on the degree of accuracy you need for your application you can trim the series. For instance,
cos(x) = 1 - (x^2)/2
with an error of the order of x^3 (actually, x^4, as the term with x^3 is zero anyway).
However, I don't think that this is going to solve your problem: the actual implementation of atan is likely to be already using the same trick, written by someone with lots of experience of speeding these things up. So this is not really a proper answer but I hope it could still be useful.

Transform a triangle on a plane

There is a triangle with points P1(x1,y1),P2(x2,y2),P3(x3,y3) on an XY plane.
The final position after transformation are known to us, P1'(x,y) and P2'(x,y)
How can I find the third point?
Using slope (or distance) formula gives two solutions (one is mirror image of another). Assuming the transformation is a combination of translation and rotation, how do I get the new coordinates of the final point P3' ?
If you already have got solution using distance formula, you need only to choose what mirror point is needed. To clarify, find sign of cross product of P1P2 vector and P1P3 vector. Then find sign of cross product of of P1'P2' vector and P1'Px vector. If signs differ, get another point.
CrossProduct = (P2.X - P1.X) * (P3.Y - P1.Y) - (P2.Y - P1.Y) * (P3.X - P1.X)
In general case you can find transformation matrix coefficients and apply this matrix to the third point
c -s 0
M = s c 0
dx dy 1
equation system
c * x1 + s * y1 + dx = x1'
-s * x1 + c * y1 + dy = y1'
c * x2 + s * y2 + dx = x2'
-s * x2 + c * y2 + dy = y2'
solve it for unknown c, s, dx, dy (really c and s are not independent)

How to approximate a half-cosine curve with bezier paths in SVG?

Suppose I want to approximate a half-cosine curve in SVG using bezier paths. The half cosine should look like this:
and runs from [x0,y0] (the left-hand control point) to [x1,y1] (the right-hand one).
How can I find an acceptable set of coefficients for a good approximation of this function?
Bonus question: how is it possible to generalize the formula for, for example, a quarter of cosine?
Please note that I don't want to approximate the cosine with a series of interconnected segments, I'd like to calculate a good approximation using a Bezier curve.
I tried the solution in comments, but, with those coefficients, the curve seems to end after the second point.
Let's assume you want to keep the tangent horizontal on both ends. So naturally the solution is going to be symmetric, and boils down to finding a first control point in horizontal direction.
I wrote a program to do this:
/*
* Find the best cubic Bézier curve approximation of a sine curve.
*
* We want a cubic Bézier curve made out of points (0,0), (0,K), (1-K,1), (1,1) that approximates
* the shifted sine curve (y = a⋅sin(bx + c) + d) which has its minimum at (0,0) and maximum at (1,1).
* This is useful for CSS animation functions.
*
* ↑ P2 P3
* 1 ו••••••***×
* | ***
* | **
* | *
* | **
* | ***
* ×***•••••••×------1-→
* P0 P1
*/
const sampleSize = 10000; // number of points to compare when determining the root-mean-square deviation
const iterations = 12; // each iteration gives one more digit
// f(x) = (sin(π⋅(x - 1/2)) + 1) / 2 = (1 - cos(πx)) / 2
const f = x => (1 - Math.cos(Math.PI * x)) / 2;
const sum = function (a, b, c) {
if (Array.isArray(c)) {
return [...arguments].reduce(sum);
}
return [a[0] + b[0], a[1] + b[1]];
};
const times = (c, [x0, x1]) => [c * x0, c * x1];
// starting points for our iteration
let [left, right] = [0, 1];
for (let digits = 1; digits <= iterations; digits++) {
// left and right are always integers (digits after 0), this keeps rounding errors low
// In each iteration, we divide them by a higher power of 10
let power = Math.pow(10, digits);
let min = [null, Infinity];
for (let K = 10 * left; K <= 10 * right; K+= 1) { // note that the candidates for K have one more digit than previous `left` and `right`
const P1 = [K / power, 0];
const P2 = [1 - K / power, 1];
const P3 = [1, 1];
let bezierPoint = t => sum(
times(3 * t * (1 - t) * (1 - t), P1),
times(3 * t * t * (1 - t), P2),
times(t * t * t, P3)
);
// determine the error (root-mean-square)
let squaredErrorSum = 0;
for (let i = 0; i < sampleSize; i++) {
let t = i / sampleSize / 2;
let P = bezierPoint(t);
let delta = P[1] - f(P[0]);
squaredErrorSum += delta * delta;
}
let deviation = Math.sqrt(squaredErrorSum); // no need to divide by sampleSize, since it is constant
if (deviation < min[1]) {
// this is the best K value with ${digits + 1} digits
min = [K, deviation];
}
}
left = min[0] - 1;
right = min[0] + 1;
console.log(`.${min[0]}`);
}
To simplify calculations, I use the normalized sine curve, which passes through (0,0) and (1,1) as its minimal / maximal points. This is also useful for CSS animations.
It returns (.3642124232,0)* as the point with the smallest root-mean-square deviation (about 0.00013).
I also created a Desmos graph that shows the accuracy:
(Click to try it out - you can drag the control point left and right)
* Note that there are rounding errors when doing math with JS, so the value is presumably accurate to no more than 5 digits or so.
Because a Bezier curve cannot exactly reconstruct a sinusoidal curve, there are many ways to create an approximation. I am going to assume that our curve starts at the point (0, 0) and ends at (1, 1).
Simple method
A simple way to approach this problem is to construct a Bezier curve B with the control points (K, 0) and ((1 - K), 1) because of the symmetry involved and the desire to keep a horizontal tangent at t=0 and t=1.
Then we just need to find a value of K such that the derivative of our Bezier curve matches that of the sinusoidal at t=0.5, i.e., .
Since the derivative of our Bezier curve is given by , this simplifies to at the point t=0.5.
Setting this equal to our desired derivative, we obtain the solution
Thus, our approximation results in:
cubic-bezier(0.3633802276324187, 0, 0.6366197723675813, 1)
and it comes very close with a root mean square deviation of about 0.000224528:
Advanced Method
For a better approximation, we may want to minimize the root mean square of their difference instead. This is more complicated to calculate, as we are now trying to find the value of K in the interval (0, 1) that minimizes the following expression:
where B is defined as follows:
cubic-bezier(0.364212423249, 0, 0.635787576751, 1)
After few tries/errors, I found that the correct ratio is K=0.37.
"M" + x1 + "," + y1
+ "C" + (x1 + K * (x2 - x1)) + "," + y1 + ","
+ (x2 - K * (x2 - x1)) + "," + y2 + ","
+ x2 + "," + y2
Look at this samples to see how Bezier matches with cosine: http://jsfiddle.net/6165Lxu6/
The green line is the real cosine, the black one is the Bezier. Scroll down to see 5 samples. Points are random at each refresh.
For the generalization, I suggest to use clipping.
I would recommend reading this article on the math of bezier curves and ellipses, as this is basicly what you want (draw a part of an ellipse):
http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
it provides some of the insights required.
then look at this graphic:
http://www.svgopen.org/2003/papers/AnimatedMathematics/ellipse.svg
where an example is made for an ellipse
now that you get the math involved, please see this example in LUA ;)
http://commons.wikimedia.org/wiki/File:Harmonic_partials_on_strings.svg
tada...

find point where barycentric weights have a specific value

I have triangle: a, b, c. Each vertex has a value: va, vb, vc. In my software the user drags point p around inside and outside of this triangle. I use barycentric coordinates to determine the value vp at p based on va, vb, and vc. So far, so good.
Now I want to limit p so that vp is within range min and max. If a user chooses p where vp is < min or > max, how can I find the point closest to p where vp is equal to min or max, respectively?
Edit: Here is an example where I test each point. Light gray is within min/max. How can I find the equations of the lines that make up the min/max boundary?
a = 200, 180
b = 300, 220
c = 300, 300
va = 1
vb = 1.4
vc = 3.2
min = 0.5
max = 3.5
Edit: FWIW, so far first I get the barycentric coordinates v,w for p using the triangle vertices a, b, c (standard stuff I think, but looks like this). Then to get vp:
u = 1 - w - v
vp = va * u + vb * w + vc * v
That is all fine. My trouble is that I need the line equations for min/max so I can choose a new position for p when vp is out of range. The new position for p is the point closest to p on the min or max line.
Note that p is an XY coordinate and vp is a value for that coordinate determined by the triangle and the values at each vertex. min and max are also values. The two line equations I need will give me XY coordinates for which the values determined by the triangle are min or max.
It doesn't matter if barycentric coordinates are used in the solution.
The trick is to use the ratio of value to cartesian distance to extend each triangle edge until it hits min or max. Easier to see with a pic:
The cyan lines show how the triangle edges are extended, the green Xs are points on the min or max lines. With just 2 of these points we know the slope if the line. The yellow lines show connecting the Xs aligns with the light gray.
The math works like this, first get the value distance between vb and vc:
valueDistBtoC = vc - vb
Then get the cartesian distance from b to c:
cartesianDistBtoC = b.distance(c)
Then get the value distance from b to max:
valueDistBtoMax = max - vb
Now we can cross multiply to get the cartesian distance from b to max:
cartesianDistBtoMax = (valueDistBtoMax * cartesianDistBtoC) / valueDistBtoC
Do the same for min and also for a,b and c,a. The 6 points are enough to restrict the position of p.
Consider your triangle to actually be a 3D triangle, with points (ax,ay,va), (bx,by,vb), and (cx,cy,vc). These three points define a plane, containing all the possible p,vp triplets obtainable through barycentric interpolation.
Now think of your constraints as two other planes, at z>=max and z<=min. Each of these planes intersects your triangle's plane along an infinite line; the infinite beam between them, projected back down onto the xy plane, represents the area of points which satisfy the constraints. Once you have the lines (projected down), you can just find which (if either) is violated by a particular point, and move it onto that constraint (along a vector which is perpendicular to the constraint).
Now I'm not sure about your hexagon, though. That's not the shape I would expect.
Mathematically speaking the problem is simply a change of coordinates. The more difficult part is finding a good notation for the quantities involved.
You have two systems of coordinates: (x,y) are the cartesian coordinates of your display and (v,w) are the baricentric coordinates with respect to the vectors (c-a),(b-a) which determine another (non orthogonal) system.
What you need is to find the equation of the two lines in the (x,y) system, then it will be easy to project the point p on these lines.
To achieve this you could explicitly find the matrix to pass from (x,y) coordinates to (v,w) coordinates and back. The function you are using toBaryCoords makes this computation to find the coordinates (v,w) from (x,y) and we can reuse that function.
We want to find the coefficients of the transformation from world coordinates (x,y) to barycentric coordinates (v,w). It must be in the form
v = O_v + x_v * x + y_v * y
w = O_w + x_w * x + y_w * y
i.e.
(v,w) = (O_v,O_w) + (x_v,y_y) * (x,y)
and you can determine (O_v,O_w) by computing toBaryCoord(0,0), then find (x_v,x_w) by computing the coordinates of (1,0) and find (y_v,y_w)=toBaryCoord(1,0) - (O_v,O_w) and then find (y_v,y_w) by computing (y_v,y_w) = toBaryCoord(0,1)-(O_v,O_w).
This computation requires calling toBaryCoord three times, but actually the coefficients are computed inside that routine every time, so you could modify it to compute at once all six values.
The value of your function vp can be computed as follows. I will use f instead of v because we are using v for a baricenter coordinate. Hence in the following I mean f(x,y) = vp, fa = va, fb = vb, fc = vc.
You have:
f(v,w) = fa + (fb-fa)*v + (fc-fa)*w
i.e.
f(x,y) = fa + (fb-fa) (O_v + x_v * x + y_v * y) + (fc-fa) (O_w + x_w * x + y_w * y)
where (x,y) are the coordinates of your point p. You can check the validity of this equation by inserting the coordinates of the three vertices a, b, c and verify that you obtain the three values fa, fb and fc. Remember that the barycenter coordinates of a are (0,0) hence O_v + x_v * a_x + y_v * a_y = 0 and so on... (a_x and a_y are the x,y coordinates of the point a).
If you let
q = fa + (fb_fa)*O_v + (fc-fa)*O_w
fx = (fb-fa)*x_v + (fc-fa) * x_w
fy = (fb-fa)*y_v + (fc-fa) * y_w
you get
f(x,y) = q + fx*x + fy * y
Notice that q, fx and fy can be computed once from a,b,c,fa,fb,fc and you can reuse them if you only change the coordinates (x,y) of the point p.
Now if f(x,y)>max, you can easily project (x,y) on the line where max is achieved. The coordinates of the projection are:
(x',y') = (x,y) - [(x,y) * (fx,fy) - max + q]/[(fx,fy) * (fx,fy)] (fx,fy)
Now. You would like to have the code. Well here is some pseudo-code:
toBarycoord(Vector2(0,0),a,b,c,O);
toBarycoord(Vector2(1,0),a,b,c,X);
toBarycoord(Vector2(0,1),a,b,c,Y);
X.sub(O); // X = X - O
Y.sub(O); // Y = Y - O
V = Vector2(fb-fa,fc-fa);
q = fa + V.dot(O); // q = fa + V*O
N = Vector2(V.dot(X),V.dot(Y)); // N = (V*X,V*Y)
// p is the point to be considered
f = q + N.dot(p); // f = q + N*p
if (f > max) {
Vector2 tmp;
tmp.set(N);
tmp.multiply((N.dot(p) - max + q)/(N.dot(N))); // scalar multiplication
p.sub(tmp);
}
if (f < min) {
Vector2 tmp;
tmp.set(N);
tmp.multiply((N.dot(p) - min + q)/(N.dot(N))); // scalar multiplication
p.sum(tmp);
}
We think of the problem as follows: The three points are interpreted as a triangle floating in 3D space with the value being the Z-axis and the cartesian coordinates mapped to the X- and Y- axes respectively.
Then the question is to find the gradient of the plane that is defined by the three points. The lines where the plane intersects with the z = min and z = max planes are the lines you want to restrict your points to.
If you have found a point p where v(p) > max or v(p) < min we need to go in the direction of the steepest slope (the gradient) until v(p + k * g) = max or min respectively. g is the direction of the gradient and k is the factor we need to find. The coordinates you are looking for (in the cartesian coordinates) are the corresponding components of p + k * g.
In order to determine g we calculate the orthonormal vector that is perpendicular to the plane that is determined by the three points using the cross product:
// input: px, py, pz,
// output: p2x, p2y
// local variables
var v1x, v1y, v1z, v2x, v2y, v2z, nx, ny, nz, tp, k,
// two vectors pointing from b to a and c respectively
v1x = ax - bx;
v1y = ay - by;
v1z = az - bz;
v2x = cx - bx;
v2y = cy - by;
v2z = cz - bz;
// the cross poduct
nx = v2y * v1z - v2z * v1y;
ny = v2z * v1x - v2x * v1z;
nz = v2x * v1y - v2y * v1x;
// using the right triangle altitude theorem
// we can calculate the vector that is perpendicular to n
// in our triangle we are looking for q where p is nz, and h is sqrt(nx*nx+ny*ny)
// the theorem says p*q = h^2 so p = h^2 / q - we use tp to disambiguate with the point p - we need to negate the value as it points into the opposite Z direction
tp = -(nx*nx + ny*ny) / nz;
// now our vector g = (nx, ny, tp) points into the direction of the steepest slope
// and thus is perpendicular to the bounding lines
// given a point p (px, py, pz) we can now calculate the nearest point p2 (p2x, p2y, p2z) where min <= v(p2z) <= max
if (pz > max){
// find k
k = (max - pz) / tp;
p2x = px + k * nx;
p2y = py + k * ny;
// proof: p2z = v = pz + k * tp = pz + ((max - pz) / tp) * tp = pz + max - pz = max
} else if (pz < min){
// find k
k = (min - pz) / tp;
p2x = px + k * nx;
p2y = py + k * ny;
} else {
// already fits
p2x = px;
p2y = py;
}
Note that obviously if the triangle is vertically oriented (in 2D it's not a triangle anymore actually), nz becomes zero and tp cannot be calculated. That's because there are no more two lines where the value is min or max respectively. For this case you will have to choose another value on the remaining line or point.

NON orthogonal projection : projecting a point onto a line at given direction (2d)

I need a solution to project a 2d point onto a 2d line at certain Direction .Here's what i've got so far : This is how i do orthogonal projection :
CVector2d project(Line line , CVector2d point)
{
CVector2d A = line.end - line.start;
CVector2d B = point - line start;
float dot = A.dotProduct(B);
float mag = A.getMagnitude();
float md = dot/mag;
return CVector2d (line.start + A * md);
}
Result :
(Projecting P onto line and the result is Pr):
but i need to project the point onto the line at given DIRECTION which should return a result like this (project point P1 onto line at specific Direction calculate Pr) :
How should I take Direction vector into account to calculate Pr ?
I can come up with 2 methods out of my head.
Personally I would do this using affine transformations (but seems you don not have this concept as you are using vectors not points). The procedure with affine transformations is easy. Rotate the points to one of the cardinal axes read the coordinate of your point zero the other value and inverse transform back. The reason for this strategy is that nearly all transformation procedures reduce to very simple human understandable operations with the affine transformation scheme. So no real work to do once you have the tools and data structures at hand.
However since you didn't see this coming I assume you want to hear a vector operation instead (because you either prefer the matrix operation or run away when its suggested, tough its the same thing). So you have the following situation:
This expressed as a equation system looks like (its intentionally this way to show you that it is NOT code but math at this point):
line.start.x + x*(line.end.x - line.start.x)+ y*direction.x = point.x
line.start.y + x*(line.end.y - line.start.y)+ y*direction.y = point.y
now this can be solved for x (and y)
x = (direction.y * line.start.x - direction.x * line.start.y -
direction.y * point.x + direction.x * point.y) /
(direction.y * line.end.x - direction.x * line.end.y -
direction.y * line.start.x + direction.x * line.start.y);
// the solution for y can be omitted you dont need it
y = -(line.end.y * line.start.x - line.end.x * line.start.y -
line.end.y * point.x + line.start.y * point.x + line.end.x * point.y -
line.start.x point.y)/
(-direction.y * line.end.x + direction.x * line.end.y +
direction.y * line.start.x - direction.x * line.start.y)
Calculation done with mathematica if I didn't copy anything wrong it should work. But I would never use this solution because its not understandable (although it is high school grade math, or at least it is where I am). But use space transformation as described above.

Resources