how can remove decimal place after value in C#? - string

Let I have decimal value of 14.8447 and I need this value 8447 in string.
Can any one find any way for me using window Forms C#.

You could use something like:
decimal d = 14.8447m;
string s = d.ToString(CultureInfo.InvariantCulture);
string t = s.Substring( s.IndexOf('.')+1);
(Although I think my code is a bit of a hack)
To make it a little bit more error-proof, you could write:
decimal d = 14.8447m;
string s = d.ToString(CultureInfo.InvariantCulture);
int index = s.IndexOf('.');
string t = index >= 0 && index + 1 < s.Length
? s.Substring(index + 1)
: string.Empty;
This works well with e.g. the following numbers:
decimal d = 14m; // Returning empty string.
decimal d = .3m; // Returning "3".
Here is a short online version at Ideone.com.

string.Format("{0:0.0000}", 14.8447m).Split(',', '.').Last()

Could be so:
decimal Numero = 8.24M;
string r = (Numero - Math.Floor(Numero)).ToString().Replace("0.", "");
Easy I guess;

Related

Call to MongoDB in Express fails when using varibles but work with literals [duplicate]

How do I convert a string to an integer in JavaScript?
The simplest way would be to use the native Number function:
var x = Number("1000")
If that doesn't work for you, then there are the parseInt, unary plus, parseFloat with floor, and Math.round methods.
parseInt()
var x = parseInt("1000", 10); // You want to use radix 10
// So you get a decimal number even with a leading 0 and an old browser ([IE8, Firefox 20, Chrome 22 and older][1])
Unary plus
If your string is already in the form of an integer:
var x = +"1000";
floor()
If your string is or might be a float and you want an integer:
var x = Math.floor("1000.01"); // floor() automatically converts string to number
Or, if you're going to be using Math.floor several times:
var floor = Math.floor;
var x = floor("1000.01");
parseFloat()
If you're the type who forgets to put the radix in when you call parseInt, you can use parseFloat and round it however you like. Here I use floor.
var floor = Math.floor;
var x = floor(parseFloat("1000.01"));
round()
Interestingly, Math.round (like Math.floor) will do a string to number conversion, so if you want the number rounded (or if you have an integer in the string), this is a great way, maybe my favorite:
var round = Math.round;
var x = round("1000"); // Equivalent to round("1000", 0)
Try parseInt function:
var number = parseInt("10");
But there is a problem. If you try to convert "010" using parseInt function, it detects as octal number, and will return number 8. So, you need to specify a radix (from 2 to 36). In this case base 10.
parseInt(string, radix)
Example:
var result = parseInt("010", 10) == 10; // Returns true
var result = parseInt("010") == 10; // Returns false
Note that parseInt ignores bad data after parsing anything valid.
This guid will parse as 51:
var result = parseInt('51e3daf6-b521-446a-9f5b-a1bb4d8bac36', 10) == 51; // Returns true
There are two main ways to convert a string to a number in JavaScript. One way is to parse it and the other way is to change its type to a Number. All of the tricks in the other answers (e.g., unary plus) involve implicitly coercing the type of the string to a number. You can also do the same thing explicitly with the Number function.
Parsing
var parsed = parseInt("97", 10);
parseInt and parseFloat are the two functions used for parsing strings to numbers. Parsing will stop silently if it hits a character it doesn't recognise, which can be useful for parsing strings like "92px", but it's also somewhat dangerous, since it won't give you any kind of error on bad input, instead you'll get back NaN unless the string starts with a number. Whitespace at the beginning of the string is ignored. Here's an example of it doing something different to what you want, and giving no indication that anything went wrong:
var widgetsSold = parseInt("97,800", 10); // widgetsSold is now 97
It's good practice to always specify the radix as the second argument. In older browsers, if the string started with a 0, it would be interpreted as octal if the radix wasn't specified which took a lot of people by surprise. The behaviour for hexadecimal is triggered by having the string start with 0x if no radix is specified, e.g., 0xff. The standard actually changed with ECMAScript 5, so modern browsers no longer trigger octal when there's a leading 0 if no radix has been specified. parseInt understands radixes up to base 36, in which case both upper and lower case letters are treated as equivalent.
Changing the Type of a String to a Number
All of the other tricks mentioned above that don't use parseInt, involve implicitly coercing the string into a number. I prefer to do this explicitly,
var cast = Number("97");
This has different behavior to the parse methods (although it still ignores whitespace). It's more strict: if it doesn't understand the whole of the string than it returns NaN, so you can't use it for strings like 97px. Since you want a primitive number rather than a Number wrapper object, make sure you don't put new in front of the Number function.
Obviously, converting to a Number gives you a value that might be a float rather than an integer, so if you want an integer, you need to modify it. There are a few ways of doing this:
var rounded = Math.floor(Number("97.654")); // other options are Math.ceil, Math.round
var fixed = Number("97.654").toFixed(0); // rounded rather than truncated
var bitwised = Number("97.654")|0; // do not use for large numbers
Any bitwise operator (here I've done a bitwise or, but you could also do double negation as in an earlier answer or a bit shift) will convert the value to a 32 bit integer, and most of them will convert to a signed integer. Note that this will not do want you want for large integers. If the integer cannot be represented in 32 bits, it will wrap.
~~"3000000000.654" === -1294967296
// This is the same as
Number("3000000000.654")|0
"3000000000.654" >>> 0 === 3000000000 // unsigned right shift gives you an extra bit
"300000000000.654" >>> 0 === 3647256576 // but still fails with larger numbers
To work correctly with larger numbers, you should use the rounding methods
Math.floor("3000000000.654") === 3000000000
// This is the same as
Math.floor(Number("3000000000.654"))
Bear in mind that coercion understands exponential notation and Infinity, so 2e2 is 200 rather than NaN, while the parse methods don't.
Custom
It's unlikely that either of these methods do exactly what you want. For example, usually I would want an error thrown if parsing fails, and I don't need support for Infinity, exponentials or leading whitespace. Depending on your use case, sometimes it makes sense to write a custom conversion function.
Always check that the output of Number or one of the parse methods is the sort of number you expect. You will almost certainly want to use isNaN to make sure the number is not NaN (usually the only way you find out that the parse failed).
ParseInt() and + are different
parseInt("10.3456") // returns 10
+"10.3456" // returns 10.3456
Fastest
var x = "1000"*1;
Test
Here is little comparison of speed (macOS only)... :)
For Chrome, 'plus' and 'mul' are fastest (>700,000,00 op/sec), 'Math.floor' is slowest. For Firefox, 'plus' is slowest (!) 'mul' is fastest (>900,000,000 op/sec). In Safari 'parseInt' is fastest, 'number' is slowest (but results are quite similar, >13,000,000 <31,000,000). So Safari for cast string to int is more than 10x slower than other browsers. So the winner is 'mul' :)
You can run it on your browser by this link
https://jsperf.com/js-cast-str-to-number/1
I also tested var x = ~~"1000";. On Chrome and Safari, it is a little bit slower than var x = "1000"*1 (<1%), and on Firefox it is a little bit faster (<1%).
I use this way of converting string to number:
var str = "25"; // String
var number = str*1; // Number
So, when multiplying by 1, the value does not change, but JavaScript automatically returns a number.
But as it is shown below, this should be used if you are sure that the str is a number (or can be represented as a number), otherwise it will return NaN - not a number.
You can create simple function to use, e.g.,
function toNumber(str) {
return str*1;
}
Try parseInt.
var number = parseInt("10", 10); //number will have value of 10.
I love this trick:
~~"2.123"; //2
~~"5"; //5
The double bitwise negative drops off anything after the decimal point AND converts it to a number format. I've been told it's slightly faster than calling functions and whatnot, but I'm not entirely convinced.
Another method I just saw here (a question about the JavaScript >>> operator, which is a zero-fill right shift) which shows that shifting a number by 0 with this operator converts the number to a uint32 which is nice if you also want it unsigned. Again, this converts to an unsigned integer, which can lead to strange behaviors if you use a signed number.
"-2.123" >>> 0; // 4294967294
"2.123" >>> 0; // 2
"-5" >>> 0; // 4294967291
"5" >>> 0; // 5
In JavaScript, you can do the following:
ParseInt
parseInt("10.5") // Returns 10
Multiplying with 1
var s = "10";
s = s*1; // Returns 10
Using the unary operator (+)
var s = "10";
s = +s; // Returns 10
Using a bitwise operator
(Note: It starts to break after 2140000000. Example: ~~"2150000000" = -2144967296)
var s = "10.5";
s = ~~s; // Returns 10
Using Math.floor() or Math.ceil()
var s = "10";
s = Math.floor(s) || Math.ceil(s); // Returns 10
Please see the below example. It will help answer your question.
Example Result
parseInt("4") 4
parseInt("5aaa") 5
parseInt("4.33333") 4
parseInt("aaa"); NaN (means "Not a Number")
By using parseint function, it will only give op of integer present and not the string.
Beware if you use parseInt to convert a float in scientific notation!
For example:
parseInt("5.6e-14")
will result in
5
instead of
0
Also as a side note: MooTools has the function toInt() which is used on any native string (or float (or integer)).
"2".toInt() // 2
"2px".toInt() // 2
2.toInt() // 2
We can use +(stringOfNumber) instead of using parseInt(stringOfNumber).
Example: +("21") returns int of 21, like the parseInt("21").
We can use this unary "+" operator for parsing float too...
To convert a String into Integer, I recommend using parseFloat and not parseInt. Here's why:
Using parseFloat:
parseFloat('2.34cms') //Output: 2.34
parseFloat('12.5') //Output: 12.5
parseFloat('012.3') //Output: 12.3
Using parseInt:
parseInt('2.34cms') //Output: 2
parseInt('12.5') //Output: 12
parseInt('012.3') //Output: 12
So if you have noticed parseInt discards the values after the decimals, whereas parseFloat lets you work with floating point numbers and hence more suitable if you want to retain the values after decimals. Use parseInt if and only if you are sure that you want the integer value.
There are many ways in JavaScript to convert a string to a number value... All are simple and handy. Choose the way which one works for you:
var num = Number("999.5"); //999.5
var num = parseInt("999.5", 10); //999
var num = parseFloat("999.5"); //999.5
var num = +"999.5"; //999.5
Also, any Math operation converts them to number, for example...
var num = "999.5" / 1; //999.5
var num = "999.5" * 1; //999.5
var num = "999.5" - 1 + 1; //999.5
var num = "999.5" - 0; //999.5
var num = Math.floor("999.5"); //999
var num = ~~"999.5"; //999
My prefer way is using + sign, which is the elegant way to convert a string to number in JavaScript.
Try str - 0 to convert string to number.
> str = '0'
> str - 0
0
> str = '123'
> str - 0
123
> str = '-12'
> str - 0
-12
> str = 'asdf'
> str - 0
NaN
> str = '12.34'
> str - 0
12.34
Here are two links to compare the performance of several ways to convert string to int
https://jsperf.com/number-vs-parseint-vs-plus
http://phrogz.net/js/string_to_number.html
Here is the easiest solution
let myNumber = "123" | 0;
More easy solution
let myNumber = +"123";
In my opinion, no answer covers all edge cases as parsing a float should result in an error.
function parseInteger(value) {
if(value === '') return NaN;
const number = Number(value);
return Number.isInteger(number) ? number : NaN;
}
parseInteger("4") // 4
parseInteger("5aaa") // NaN
parseInteger("4.33333") // NaN
parseInteger("aaa"); // NaN
The easiest way would be to use + like this
const strTen = "10"
const numTen = +strTen // string to number conversion
console.log(typeof strTen) // string
console.log(typeof numTen) // number
I actually needed to "save" a string as an integer, for a binding between C and JavaScript, so I convert the string into an integer value:
/*
Examples:
int2str( str2int("test") ) == "test" // true
int2str( str2int("t€st") ) // "t¬st", because "€".charCodeAt(0) is 8364, will be AND'ed with 0xff
Limitations:
maximum 4 characters, so it fits into an integer
*/
function str2int(the_str) {
var ret = 0;
var len = the_str.length;
if (len >= 1) ret += (the_str.charCodeAt(0) & 0xff) << 0;
if (len >= 2) ret += (the_str.charCodeAt(1) & 0xff) << 8;
if (len >= 3) ret += (the_str.charCodeAt(2) & 0xff) << 16;
if (len >= 4) ret += (the_str.charCodeAt(3) & 0xff) << 24;
return ret;
}
function int2str(the_int) {
var tmp = [
(the_int & 0x000000ff) >> 0,
(the_int & 0x0000ff00) >> 8,
(the_int & 0x00ff0000) >> 16,
(the_int & 0xff000000) >> 24
];
var ret = "";
for (var i=0; i<4; i++) {
if (tmp[i] == 0)
break;
ret += String.fromCharCode(tmp[i]);
}
return ret;
}
String to Number in JavaScript:
Unary + (most recommended)
+numStr is easy to use and has better performance compared with others
Supports both integers and decimals
console.log(+'123.45') // => 123.45
Some other options:
Parsing Strings:
parseInt(numStr) for integers
parseFloat(numStr) for both integers and decimals
console.log(parseInt('123.456')) // => 123
console.log(parseFloat('123')) // => 123
JavaScript Functions
Math functions like round(numStr), floor(numStr), ceil(numStr) for integers
Number(numStr) for both integers and decimals
console.log(Math.floor('123')) // => 123
console.log(Math.round('123.456')) // => 123
console.log(Math.ceil('123.454')) // => 124
console.log(Number('123.123')) // => 123.123
Unary Operators
All basic unary operators, +numStr, numStr-0, 1*numStr, numStr*1, and numStr/1
All support both integers and decimals
Be cautious about numStr+0. It returns a string.
console.log(+'123') // => 123
console.log('002'-0) // => 2
console.log(1*'5') // => 5
console.log('7.7'*1) // => 7.7
console.log(3.3/1) // =>3.3
console.log('123.123'+0, typeof ('123.123' + 0)) // => 123.1230 string
Bitwise Operators
Two tilde ~~numStr or left shift 0, numStr<<0
Supports only integers, but not decimals
console.log(~~'123') // => 123
console.log('0123'<<0) // => 123
console.log(~~'123.123') // => 123
console.log('123.123'<<0) // => 123
// Parsing
console.log(parseInt('123.456')) // => 123
console.log(parseFloat('123')) // => 123
// Function
console.log(Math.floor('123')) // => 123
console.log(Math.round('123.456')) // => 123
console.log(Math.ceil('123.454')) // => 124
console.log(Number('123.123')) // => 123.123
// Unary
console.log(+'123') // => 123
console.log('002'-0) // => 2
console.log(1*'5') // => 5
console.log('7.7'*1) // => 7.7
console.log(3.3/1) // => 3.3
console.log('123.123'+0, typeof ('123.123'+0)) // => 123.1230 string
// Bitwise
console.log(~~'123') // => 123
console.log('0123'<<0) // => 123
console.log(~~'123.123') // => 123
console.log('123.123'<<0) // => 123
function parseIntSmarter(str) {
// ParseInt is bad because it returns 22 for "22thisendsintext"
// Number() is returns NaN if it ends in non-numbers, but it returns 0 for empty or whitespace strings.
return isNaN(Number(str)) ? NaN : parseInt(str, 10);
}
You can use plus.
For example:
var personAge = '24';
var personAge1 = (+personAge)
then you can see the new variable's type bytypeof personAge1 ; which is number.
Summing the multiplication of digits with their respective power of ten:
i.e: 123 = 100+20+3 = 1100 + 2+10 + 31 = 1*(10^2) + 2*(10^1) + 3*(10^0)
function atoi(array) {
// Use exp as (length - i), other option would be
// to reverse the array.
// Multiply a[i] * 10^(exp) and sum
let sum = 0;
for (let i = 0; i < array.length; i++) {
let exp = array.length - (i+1);
let value = array[i] * Math.pow(10, exp);
sum += value;
}
return sum;
}
The safest way to ensure you get a valid integer:
let integer = (parseInt(value, 10) || 0);
Examples:
// Example 1 - Invalid value:
let value = null;
let integer = (parseInt(value, 10) || 0);
// => integer = 0
// Example 2 - Valid value:
let value = "1230.42";
let integer = (parseInt(value, 10) || 0);
// => integer = 1230
// Example 3 - Invalid value:
let value = () => { return 412 };
let integer = (parseInt(value, 10) || 0);
// => integer = 0
Another option is to double XOR the value with itself:
var i = 12.34;
console.log('i = ' + i);
console.log('i ⊕ i ⊕ i = ' + (i ^ i ^ i));
This will output:
i = 12.34
i ⊕ i ⊕ i = 12
I only added one plus(+) before string and that was solution!
+"052254" // 52254
Number()
Number(" 200.12 ") // Returns 200.12
Number("200.12") // Returns 200.12
Number("200") // Returns 200
parseInt()
parseInt(" 200.12 ") // Return 200
parseInt("200.12") // Return 200
parseInt("200") // Return 200
parseInt("Text information") // Returns NaN
parseFloat()
It will return the first number
parseFloat("200 400") // Returns 200
parseFloat("200") // Returns 200
parseFloat("Text information") // Returns NaN
parseFloat("200.10") // Return 200.10
Math.floor()
Round a number to the nearest integer
Math.floor(" 200.12 ") // Return 200
Math.floor("200.12") // Return 200
Math.floor("200") // Return 200
function doSth(){
var a = document.getElementById('input').value;
document.getElementById('number').innerHTML = toNumber(a) + 1;
}
function toNumber(str){
return +str;
}
<input id="input" type="text">
<input onclick="doSth()" type="submit">
<span id="number"></span>
This (probably) isn't the best solution for parsing an integer, but if you need to "extract" one, for example:
"1a2b3c" === 123
"198some text2hello world!30" === 198230
// ...
this would work (only for integers):
var str = '3a9b0c3d2e9f8g'
function extractInteger(str) {
var result = 0;
var factor = 1
for (var i = str.length; i > 0; i--) {
if (!isNaN(str[i - 1])) {
result += parseInt(str[i - 1]) * factor
factor *= 10
}
}
return result
}
console.log(extractInteger(str))
Of course, this would also work for parsing an integer, but would be slower than other methods.
You could also parse integers with this method and return NaN if the string isn't a number, but I don't see why you'd want to since this relies on parseInt internally and parseInt is probably faster.
var str = '3a9b0c3d2e9f8g'
function extractInteger(str) {
var result = 0;
var factor = 1
for (var i = str.length; i > 0; i--) {
if (isNaN(str[i - 1])) return NaN
result += parseInt(str[i - 1]) * factor
factor *= 10
}
return result
}
console.log(extractInteger(str))

Error in using indexOf not finding char in Arduino String

I have some code that I have no clue why it isn't working.
The code takes a serial input in the form of "xxx,yyy,zzz", where digits can range from 1 to 3 in each number. Because of an odd quirk in an app, it needs to be read as a char, then converted to a string to be handled. The intention is to split into 3 ints, red green and blue, from "RRR,GGG,BBB".
Now this works fine when I manually define String str (see commented code), but when I go and enter it from the serial console, it doesn't want to work. It seems to be coming from the indexOf(',') part, as while using Serial.print(c1);, I found that when I manually entered a string, it returned an index of the comma, but when I used the serial console, it returned -1 (not found).
And yes, the entered string into the console is in the correct format of "RRR,GGG,BBB", I've confirmed that by printing both phone and str independently.
while (Serial.available() > 0) {
char phone = Serial.read();
String str = String(phone);
//String str = "87,189,183";
int ln = str.length()-1;
int c1 = str.indexOf(','); //first place to cut string
int c2 = str.indexOf(',',c1+1); //second place
red = str.substring(0,c1).toInt();
green = str.substring(c1,c2).toInt();
blue = str.substring(c2,ln).toInt();
Serial.print(red);
Edit: With the Arduino String class, creating a string from a char is returning more than just one character, eleven in fact.
This:
char phone = Serial.read();
String str = String(phone);
will never create a string in str that has more than 1 character, since that's what you say you want.
This is the code for the Arduino's String(char) constructor:
String::String(char c)
{
init();
char buf[2];
buf[0] = c;
buf[1] = 0;
*this = buf;
}
So clearly your code will create a 1-character long string.
Also, beware of using indexes computed on the full string, on substrings later.
I'm try to guess that you are using these serial API http://playground.arduino.cc/Interfacing/CPPWindows.
while (Serial.available() > 0) {
char buf[12];
int len = Serial.ReadData(buf,11);
String str = String(buf);
//String str = "87,189,183";
int ln = str.length()-1;
int c1 = str.indexOf(','); //first place to cut string
int c2 = str.indexOf(',',c1+1); //second place
red = str.substring(0,c1).toInt();
green = str.substring(c1,c2).toInt();
blue = str.substring(c2,ln).toInt();
Serial.print(red);
If you are using other API like http://arduino.cc/en/Serial/Read you should follow these API where Serial is a Stream and read() return just the first available char.
Code was fixed by using a different function.
while (Serial.available() > 0) {
char phone = Serial.read();
str += phone;
//String str = "87,189,183";
int ln = str.length()-1;
int c1 = str.indexOf(','); //first place to cut string
int c2 = str.indexOf(',',c1+1); //second place
red = str.substring(0,c1).toInt();
green = str.substring(c1,c2).toInt();
blue = str.substring(c2,ln).toInt();
Serial.print(red);
I'm not sure why this works, and why before I was getting a string with more than one character. But it works!

Finding minimum moves required for making 2 strings equal

This is a question from one of the online coding challenge (which has completed).
I just need some logic for this as to how to approach.
Problem Statement:
We have two strings A and B with the same super set of characters. We need to change these strings to obtain two equal strings. In each move we can perform one of the following operations:
1. swap two consecutive characters of a string
2. swap the first and the last characters of a string
A move can be performed on either string.
What is the minimum number of moves that we need in order to obtain two equal strings?
Input Format and Constraints:
The first and the second line of the input contains two strings A and B. It is guaranteed that the superset their characters are equal.
1 <= length(A) = length(B) <= 2000
All the input characters are between 'a' and 'z'
Output Format:
Print the minimum number of moves to the only line of the output
Sample input:
aab
baa
Sample output:
1
Explanation:
Swap the first and last character of the string aab to convert it to baa. The two strings are now equal.
EDIT : Here is my first try, but I'm getting wrong output. Can someone guide me what is wrong in my approach.
int minStringMoves(char* a, char* b) {
int length, pos, i, j, moves=0;
char *ptr;
length = strlen(a);
for(i=0;i<length;i++) {
// Find the first occurrence of b[i] in a
ptr = strchr(a,b[i]);
pos = ptr - a;
// If its the last element, swap with the first
if(i==0 && pos == length-1) {
swap(&a[0], &a[length-1]);
moves++;
}
// Else swap from current index till pos
else {
for(j=pos;j>i;j--) {
swap(&a[j],&a[j-1]);
moves++;
}
}
// If equal, break
if(strcmp(a,b) == 0)
break;
}
return moves;
}
Take a look at this example:
aaaaaaaaab
abaaaaaaaa
Your solution: 8
aaaaaaaaab -> aaaaaaaaba -> aaaaaaabaa -> aaaaaabaaa -> aaaaabaaaa ->
aaaabaaaaa -> aaabaaaaaa -> aabaaaaaaa -> abaaaaaaaa
Proper solution: 2
aaaaaaaaab -> baaaaaaaaa -> abaaaaaaaa
You should check if swapping in the other direction would give you better result.
But sometimes you will also ruin the previous part of the string. eg:
caaaaaaaab
cbaaaaaaaa
caaaaaaaab -> baaaaaaaac -> abaaaaaaac
You need another swap here to put back the 'c' to the first place.
The proper algorithm is probably even more complex, but you can see now what's wrong in your solution.
The A* algorithm might work for this problem.
The initial node will be the original string.
The goal node will be the target string.
Each child of a node will be all possible transformations of that string.
The current cost g(x) is simply the number of transformations thus far.
The heuristic h(x) is half the number of characters in the wrong position.
Since h(x) is admissible (because a single transformation can't put more than 2 characters in their correct positions), the path to the target string will give the least number of transformations possible.
However, an elementary implementation will likely be too slow. Calculating all possible transformations of a string would be rather expensive.
Note that there's a lot of similarity between a node's siblings (its parent's children) and its children. So you may be able to just calculate all transformations of the original string and, from there, simply copy and recalculate data involving changed characters.
You can use dynamic programming. Go over all swap possibilities while storing all the intermediate results along with the minimal number of steps that took you to get there. Actually, you are going to calculate the minimum number of steps for every possible target string that can be obtained by applying given rules for a number times. Once you calculate it all, you can print the minimum number of steps, which is needed to take you to the target string. Here's the sample code in JavaScript, and its usage for "aab" and "baa" examples:
function swap(str, i, j) {
var s = str.split("");
s[i] = str[j];
s[j] = str[i];
return s.join("");
}
function calcMinimumSteps(current, stepsCount)
{
if (typeof(memory[current]) !== "undefined") {
if (memory[current] > stepsCount) {
memory[current] = stepsCount;
} else if (memory[current] < stepsCount) {
stepsCount = memory[current];
}
} else {
memory[current] = stepsCount;
calcMinimumSteps(swap(current, 0, current.length-1), stepsCount+1);
for (var i = 0; i < current.length - 1; ++i) {
calcMinimumSteps(swap(current, i, i + 1), stepsCount+1);
}
}
}
var memory = {};
calcMinimumSteps("aab", 0);
alert("Minimum steps count: " + memory["baa"]);
Here is the ruby logic for this problem, copy this code in to rb file and execute.
str1 = "education" #Sample first string
str2 = "cnatdeiou" #Sample second string
moves_count = 0
no_swap = 0
count = str1.length - 1
def ends_swap(str1,str2)
str2 = swap_strings(str2,str2.length-1,0)
return str2
end
def swap_strings(str2,cp,np)
current_string = str2[cp]
new_string = str2[np]
str2[cp] = new_string
str2[np] = current_string
return str2
end
def consecutive_swap(str,current_position, target_position)
counter=0
diff = current_position > target_position ? -1 : 1
while current_position!=target_position
new_position = current_position + diff
str = swap_strings(str,current_position,new_position)
# p "-------"
# p "CP: #{current_position} NP: #{new_position} TP: #{target_position} String: #{str}"
current_position+=diff
counter+=1
end
return counter,str
end
while(str1 != str2 && count!=0)
counter = 1
if str1[-1]==str2[0]
# p "cross match"
str2 = ends_swap(str1,str2)
else
# p "No match for #{str2}-- Count: #{count}, TC: #{str1[count]}, CP: #{str2.index(str1[count])}"
str = str2[0..count]
cp = str.rindex(str1[count])
tp = count
counter, str2 = consecutive_swap(str2,cp,tp)
count-=1
end
moves_count+=counter
# p "Step: #{moves_count}"
# p str2
end
p "Total moves: #{moves_count}"
Please feel free to suggest any improvements in this code.
Try this code. Hope this will help you.
public class TwoStringIdentical {
static int lcs(String str1, String str2, int m, int n) {
int L[][] = new int[m + 1][n + 1];
int i, j;
for (i = 0; i <= m; i++) {
for (j = 0; j <= n; j++) {
if (i == 0 || j == 0)
L[i][j] = 0;
else if (str1.charAt(i - 1) == str2.charAt(j - 1))
L[i][j] = L[i - 1][j - 1] + 1;
else
L[i][j] = Math.max(L[i - 1][j], L[i][j - 1]);
}
}
return L[m][n];
}
static void printMinTransformation(String str1, String str2) {
int m = str1.length();
int n = str2.length();
int len = lcs(str1, str2, m, n);
System.out.println((m - len)+(n - len));
}
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
String str1 = scan.nextLine();
String str2 = scan.nextLine();
printMinTransformation("asdfg", "sdfg");
}
}

How to sum up elements of an arraylist having type String?

I have an arraylist consisting of decimal numbers and i m supposed to take the average of last 4 elements of this arraylist.And these rational number are type of String.
private void average(String confidence) {
if(myList.size() >= 4) {
String t = myList.get(myList.size()-1);
String d = myList.get(myList.size()-2);
String f = myList.get(myList.size()-3);
String h = myList.get(myList.size()-4);
String s = (t + d + f+h) ;
long fin = Long.parseLong(s);
long result = fin/4 ;
System.out.println("Average is: "+result);
}
but this method does not work.Could you please tell me what kind of changes am i supposed to do or any advices of doing this? Thanks a lot in advance!!!
Your issue is the String s = (t + d + f+h) part. You're just appending 4 Strings right now.
You need to convert them first.
And your result will be wrong, you need to divide by 4, not 3.
Colleen's answer is good, so long as you remember to change the type to reflect what Long.parseLong() returns. I'd reply, but I'm too new.
if(myList.size() >= 4) {
Double t = Double.parseLong(myList.get(conf.size()-1));
Double d = Double.pareseLong(myList.get(conf.size()-2));
Double f = Double.parseLong(myList.get(conf.size()-3));
Double h = Double.parseLong(myList.get(conf.size()-4));
Double result = (t + d + f + h) / 3 ;
System.out.println("meanAsrConfidence is: "+result);
}
You need to convert before you add. + on Strings means concatenate.
if(myList.size() >= 4) {
//I'm guessing all of these conf.size() calls are meant to be myList.size()
double t = Double.parseDouble(myList.get(conf.size()-1));
double d = Double.pareseDouble(myList.get(conf.size()-2));
double f = Double.parseDouble(myList.get(conf.size()-3));
double h = Double.parseDoublemyList.get(conf.size()-4));
double s = (t + d + f+h) ;
double result = s/3 ; //should be 4
System.out.println("meanAsrConfidence is: "+result);
}
What you are doing now is, for example:
t=1, d=2, f=3, h=4
s = 1234
Also:
you need to divide by 4, not 3
what is conf? Why are you not calling myList.size()?
you're passing a String as an argument when you probably want to be passing myList

d programming, parse or convert string to double

as easy as it is in other languages, i can't seem to find an option in the d programming language where i can convert a string (ex: "234.32") into a double/float/real.
using atof from the std.c.stdio library only works when i use a constant string. (ex: atof("234.32") works but atof(tokens[i]); where tokens is an dynamic array with strings doesn't work).
how to convert or parse a string into a real/double/float in the d-programming language?
Easy.
import std.conv;
import std.stdio;
void main() {
float x = to!float("234.32");
double y = to!double("234.32");
writefln("And the float is: %f\nHey, we also got a double: %f", x, y);
}
std.conv is the swiss army knife of conversion in D. It's really impressive!
To convert from most any type to most any other type, use std.conv.to. e.g.
auto d = to!double("234.32");
or
auto str = to!string(234.32);
On the other hand, if you're looking to parse several whitespace-separated values from a string (removing the values from the string as you go), then use std.conv.parse. e.g.
auto str = "123 456.7 false";
auto i = parse!int(str);
str = str.stripLeft();
auto d = parse!double(str);
str = str.stripLeft();
auto b = parse!bool(str);
assert(i == 123);
assert(d == 456.7);
assert(b == false);

Resources