Transparently implementing a particular form of dynamic typing - haskell

The basic idea is that I have a range of functions that work on any types from a particular class, but at runtime the program is supposed to read a configuration file and extract an element of one of the types in the class.
For instance, I have a 'Coefficient' class, various instances of it, and functions of various types that are polymorphic over types of that class; at runtime one particular type of that class is to be determined, and passed around.
I'm unsure how to properly address this; I tried making up 'compound' types, doing something like:
data CompoundCoeff = CompoundInt Int | CompoundDouble Double | ...
where Int, Double, ... are instances of the class 'Coefficient'.
However, it started to become a big effort to adapt all the functions involved in the code to work with these compound types (and it's not a nice solution either, really). It would be OK if all functions had the same, easy type, e.g.
Coefficient a => a -> (stuff not involving a anymore)
but that's unfortunately not the case.
Another issue I ran into, is that I'm using type families, and have something like
class (Monoid (ColourData c), Coordinate (InputData c)) => ColourScheme c where
type ColourData c :: *
type InputData c :: *
colouriseData :: c -> (ColourData c) -> AlphaColour Double
processInput :: c -> InputData c -> ColourData c
This doesn't go through cleanly if I have to use some sort of compound ColourData datatype, like the previous one; in particular I can no longer guarantee that the data stream gives a consistent type (and not just different 'subtypes' of a compound type), and would (among other things) have to make up a bogus Monoid instance if I did make up a compound ColourData type.
I've also looked into Data.Dynamic, but again I can't see how it would properly address the issues; the exact same problems seem to appear (well, slightly worse even, given that there is only one 'generic' Dynamic type as I understand it).
Question: How can I implement dynamic datatypes subordinate to particular classes, without having to rewrite all the functions involving those data types? It would be best if I didn't have to sacrifice any type safety, but I'm not too optimistic.
The program is supposed to read a configuration file at runtime, and all the requisite functions, polymorphic over the relevant class, are to be applied.

The traditional way to provide an object that guarantees that it is an instance of typeclass Foo, but makes no additional guarantees, is like so:
{-# LANGUAGE ExistentialTypes #-}
data SomeFoo = forall a . Foo a => SomeFoo a
instance Foo SomeFoo where
-- all operations just unwrap the SomeFoo straightforwardly
or, with GADTs, which might be more readable...
data SomeFoo where
SomeFoo :: Foo a => a -> SomeFoo

One proposal would be to write a single top-level function that does all the finishing touches once you've chosen a type:
topLevel :: SomeTypeClass a => a -> IO ()
Your program can then be written something like this:
main = do
config <- readConfig
case config of
UseDouble n -> topLevel n
UseSymbolic x -> topLevel x
UseWidgetFrobnosticator wf -> topLevel wf

Related

Can I discharge a constraint, if I know the class is solvable for all types of a kind?

This might seem like a stupid question, but let's say I have a Haskell type class C (a :: K) defined for some fixed kind K, and I know I have instances C a for all types a :: K. Let's furthermore assume I have T :: K -> * and a value t :: C A => T A, is there any way to eliminate the constraint? I feel like this should be possible, but I can't come up with anything.
I'm mainly interested in the case where K is a data kind.
No.
The problem here is simple: foralls in Haskell are parametric polymorphism. This means that the same code must run no matter which type gets chosen. The thing I want to say next needs a way to pull out the C a => part of a type and talk about it in isolation, and there isn't really a way to do that in Haskell's syntax. But making up a type that's kinda like that is pretty standard:
data Dict c where Dict :: c => Dict c
Now the thing you are asking for, essentially, is:
magic :: forall a. Dict (C a)
Unfortunately, the code that you want this to represent -- the behaviors of the class methods -- is different for each type of the appropriate kind.
"Okay, okay," I hear you cry, "but when I write t :: C a => T a, isn't that running different code depending on the choice of a?". But no, it turns out, you aren't. There are two extant implementation schemes for typeclasses: dictionaries (alluded to above, and essentially the same as vtables if you're familiar with that from C++) and explicit type representations. In both cases, under the hood, <C> => <T> is actually a function -- taking the methods implementing the constraint <C> in the one case and a runtime representation of all the types mentioned in the constraint <C> in the other. And that function is the same function in all cases -- the dispatch to different code paths happens in the caller.
The type forall a. Dict (C a), on the other hand, has no such luxury: its type is not permitted to be a function under the hood, but must instead be a value of a specific data type.
Consider this module:
data K = A | B
class C (t::K) where
str :: String
instance C 'A where
str = "A"
instance C 'B where
str = "B"
type family F :: K
foo :: String
foo = str #F
Arguably, C t holds for all t::K, since we have the two instances. Then, however, we define a type family F::K which is, essentially, an unknown kind: it could be A, it could be B. Without a line such type instance F = ... defining F, it is impossible to define foo, since it could be "A" or "B".
Indeed, it is impossible to resolve this constraint.
Note that the type instance might even be defined in another module. Indeed, it is pretty common to define type families and type instances in distinct modules, like we do for type classes and their instances. It is impossible, however, to perform separate compilation when we have no information about the type instance.
The solution is, of course, deferring the constraint resolution by adding the constraint to foo:
foo :: C F => String
foo = str #F

Clarification on Existential Types in Haskell

I am trying to understand Existential types in Haskell and came across a PDF http://www.ii.uni.wroc.pl/~dabi/courses/ZPF15/rlasocha/prezentacja.pdf
Please correct my below understandings that I have till now.
Existential Types not seem to be interested in the type they contain but pattern matching them say that there exists some type we don't know what type it is until & unless we use Typeable or Data.
We use them when we want to Hide types (ex: for Heterogeneous Lists) or we don't really know what the types at Compile Time.
GADT's provide the clear & better syntax to code using Existential Types by providing implicit forall's
My Doubts
In Page 20 of above PDF it is mentioned for below code that it is impossible for a Function to demand specific Buffer. Why is it so? When I am drafting a Function I exactly know what kind of buffer I gonna use eventhough I may not know what data I gonna put into that.
What's wrong in Having :: Worker MemoryBuffer Int If they really want to abstract over Buffer they can have a Sum type data Buffer = MemoryBuffer | NetBuffer | RandomBuffer and have a type like :: Worker Buffer Int
data Worker x = forall b. Buffer b => Worker {buffer :: b, input :: x}
data MemoryBuffer = MemoryBuffer
memoryWorker = Worker MemoryBuffer (1 :: Int)
memoryWorker :: Worker Int
As Haskell is a Full Type Erasure language like C then How does it know at Runtime which function to call. Is it something like we gonna maintain few information and pass in a Huge V-Table of Functions and at runtime it gonna figure out from V-Table? If it is so then what sort of Information it gonna store?
GADT's provide the clear & better syntax to code using Existential Types by providing implicit forall's
I think there's general agreement that the GADT syntax is better. I wouldn't say that it's because GADTs provide implicit foralls, but rather because the original syntax, enabled with the ExistentialQuantification extension, is potentially confusing/misleading. That syntax, of course, looks like:
data SomeType = forall a. SomeType a
or with a constraint:
data SomeShowableType = forall a. Show a => SomeShowableType a
and I think the consensus is that the use of the keyword forall here allows the type to be easily confused with the completely different type:
data AnyType = AnyType (forall a. a) -- need RankNTypes extension
A better syntax might have used a separate exists keyword, so you'd write:
data SomeType = SomeType (exists a. a) -- not valid GHC syntax
The GADT syntax, whether used with implicit or explicit forall, is more uniform across these types, and seems to be easier to understand. Even with an explicit forall, the following definition gets across the idea that you can take a value of any type a and put it inside a monomorphic SomeType':
data SomeType' where
SomeType' :: forall a. (a -> SomeType') -- parentheses optional
and it's easy to see and understand the difference between that type and:
data AnyType' where
AnyType' :: (forall a. a) -> AnyType'
Existential Types not seem to be interested in the type they contain but pattern matching them say that there exists some type we don't know what type it is until & unless we use Typeable or Data.
We use them when we want to Hide types (ex: for Heterogeneous Lists) or we don't really know what the types at Compile Time.
I guess these aren't too far off, though you don't have to use Typeable or Data to use existential types. I think it would be more accurate to say an existential type provides a well-typed "box" around an unspecified type. The box does "hide" the type in a sense, which allows you to make a heterogeneous list of such boxes, ignoring the types they contain. It turns out that an unconstrained existential, like SomeType' above is pretty useless, but a constrained type:
data SomeShowableType' where
SomeShowableType' :: forall a. (Show a) => a -> SomeShowableType'
allows you to pattern match to peek inside the "box" and make the type class facilities available:
showIt :: SomeShowableType' -> String
showIt (SomeShowableType' x) = show x
Note that this works for any type class, not just Typeable or Data.
With regard to your confusion about page 20 of the slide deck, the author is saying that it's impossible for a function that takes an existential Worker to demand a Worker having a particular Buffer instance. You can write a function to create a Worker using a particular type of Buffer, like MemoryBuffer:
class Buffer b where
output :: String -> b -> IO ()
data Worker x = forall b. Buffer b => Worker {buffer :: b, input :: x}
data MemoryBuffer = MemoryBuffer
instance Buffer MemoryBuffer
memoryWorker = Worker MemoryBuffer (1 :: Int)
memoryWorker :: Worker Int
but if you write a function that takes a Worker as argument, it can only use the general Buffer type class facilities (e.g., the function output):
doWork :: Worker Int -> IO ()
doWork (Worker b x) = output (show x) b
It can't try to demand that b be a particular type of buffer, even via pattern matching:
doWorkBroken :: Worker Int -> IO ()
doWorkBroken (Worker b x) = case b of
MemoryBuffer -> error "try this" -- type error
_ -> error "try that"
Finally, runtime information about existential types is made available through implicit "dictionary" arguments for the typeclasses that are involved. The Worker type above, in addtion to having fields for the buffer and input, also has an invisible implicit field that points to the Buffer dictionary (somewhat like v-table, though it's hardly huge, as it just contains a pointer to the appropriate output function).
Internally, the type class Buffer is represented as a data type with function fields, and instances are "dictionaries" of this type:
data Buffer' b = Buffer' { output' :: String -> b -> IO () }
dBuffer_MemoryBuffer :: Buffer' MemoryBuffer
dBuffer_MemoryBuffer = Buffer' { output' = undefined }
The existential type has a hidden field for this dictionary:
data Worker' x = forall b. Worker' { dBuffer :: Buffer' b, buffer' :: b, input' :: x }
and a function like doWork that operates on existential Worker' values is implemented as:
doWork' :: Worker' Int -> IO ()
doWork' (Worker' dBuf b x) = output' dBuf (show x) b
For a type class with only one function, the dictionary is actually optimized to a newtype, so in this example, the existential Worker type includes a hidden field that consists of a function pointer to the output function for the buffer, and that's the only runtime information needed by doWork.
In Page 20 of above PDF it is mentioned for below code that it is impossible for a Function to demand specific Buffer. Why is it so?
Because Worker, as defined, takes only one argument, the type of the "input" field (type variable x). E.g. Worker Int is a type. The type variable b, instead, is not a parameter of Worker, but is a sort of "local variable", so to speak. It can not be passed as in Worker Int String -- that would trigger a type error.
If we instead defined:
data Worker x b = Worker {buffer :: b, input :: x}
then Worker Int String would work, but the type is no longer existential -- we now always have to pass the buffer type as well.
As Haskell is a Full Type Erasure language like C then How does it know at Runtime which function to call. Is it something like we gonna maintain few information and pass in a Huge V-Table of Functions and at runtime it gonna figure out from V-Table? If it is so then what sort of Information it gonna store?
This is roughly correct. Briefly put, each time you apply constructor Worker, GHC infers the b type from the arguments of Worker, and then searches for an instance Buffer b. If that is found, GHC includes an additional pointer to the instance in the object. In its simplest form, this is not too different from the "pointer to vtable" which is added to each object in OOP when virtual functions are present.
In the general case, it can be much more complex, though. The compiler might use a different representation and add more pointers instead of a single one (say, directly adding the pointers to all the instance methods), if that speeds up code. Also, sometimes the compiler needs to use multiple instances to satisfy a constraint. E.g., if we need to store the instance for Eq [Int] ... then there is not one but two: one for Int and one for lists, and the two needs to be combined (at run time, barring optimizations).
It is hard to guess exactly what GHC does in each case: that depends on a ton of optimizations which might or might not trigger.
You could try googling for the "dictionary based" implementation of type classes to see more about what's going on. You can also ask GHC to print the internal optimized Core with -ddump-simpl and observe the dictionaries being constructed, stored, and passed around. I have to warn you: Core is rather low level, and can be hard to read at first.

Haskell: Filtering by type

For any particular type A:
data A = A Int
is is possible to write this function?
filterByType :: a -> Maybe a
It should return Just . id if value of type A is given, and Nothing for value of any other types.
Using any means (GHC exts, TH, introspection, etc.)
NB. Since my last question about Haskell typesystem was criticized by the community as "terribly oversimplified", I feel the need to state, that this is a purely academic interest in Haskell typesystem limitations, without any particular task behind it that needs to be solved.
You are looking for cast at Data.Typeable
cast :: forall a b. (Typeable a, Typeable b) => a -> Maybe b
Related question here
Example
{-# LANGUAGE DeriveDataTypeable #-}
import Data.Typeable
data A = A Int deriving (Show, Typeable)
data B = B String deriving (Show, Typeable)
showByType :: Typeable a =>a ->String
showByType x = case (cast x, cast x) of
(Just (A y), _) ->"Type A: " ++ show y
(_, Just (B z)) ->"Type B: " ++ show z
then
> putStrLn $ showByType $ A 4
Type A: 4
> putStrLn $ showByType $ B "Peter"
Type B: "Peter"
>
Without Typeable derivation, no information exists about the underlying type, you can anyway perform some cast transformation like
import Unsafe.Coerce (unsafeCoerce)
filterByType :: a -> Maybe a
filterByType x = if SOMECHECK then Just (unsafeCoerce x) else Nothing
but, where is that information?
Then, you cannot write your function (or I don't know how) but in some context (binary memory inspection, template haskell, ...) may be.
No, you can't write this function. In Haskell, values without type class constraints are parametric in their type variables. This means we know that they have to behave exactly the same when instantiated at any particular type¹; in particular, and relevant to your question, this means they cannot inspect their type parameters.
This design means that that all types can be erased at run time, which GHC does in fact do. So even stepping outside of Haskell qua Haskell, unsafe tricks won't be able to help you, as the runtime representation is sort of parametric, too.
If you want something like this, josejuan's suggestion of using Typeable's cast operation is a good one.
¹ Modulo some details with seq.
A function of type a -> Maybe a is trivial. It's just Just. A function filterByType :: a -> Maybe b is impossible.
This is because once you've compiled your program, a and b are gone. There is no run time type information in Haskell, at all.
However, as mentioned in another answer you can write a function:
cast :: (Typeable a, Typeable b) => a -> Maybe b
The reason you can write this is because the constraint Typeable a tells the compiler to, where ever this function is called, pass along a run-time dictionary of values specified by Typeable. These are useful operations that can build up and tear down a great range of Haskell types. The compiler is incredibly smart about this and can pass in the right dictionary for virtually any type you use the function on.
Without this run-time dictionary, however, you cannot do anything. Without a constraint of Typeable, you simply do not get the run-time dictionary.
All that aside, if you don't mind my asking, what exactly do you want this function for? Filtering by a type is not actually useful in Haskell, so if you're trying to do that, you're probably trying to solve something the wrong way.

How to handle functions of a multi-parameter typeclass, who not need every type of the typeclass?

I've defined a typeclass similar to an interface with a bunch of functions required for my program. Sadly, it needs multiple polymorphic types, but not every function of this multi-parameter typeclass needs every type. GHC haunts me with undeduceable types and i can't get the code running.
A reduced example:
{-# LANGUAGE MultiParamTypeClasses #-}
class Foo a b where
-- ...
bar :: a -> ()
baz :: Foo a b => a -> ()
baz = bar
GHC says
Possible fix: add a type signature that fixes these type variable(s)
How can I do this for b? Especially when I want to keep b polymorphic. Only an instance of Foo should define what this type is.
This is impossible.
The underlying problem is that a multiparameter type class depends on every type parameter. If a particular definition in the class doesn't use every type parameter, the compiler will never be able to know what instance you mean, and you'll never even be able to specify it. Consider the following example:
class Foo a b where
bar :: String -> IO a
instance Foo Int Char where
bar x = return $ read x
instance Foo Int () where
bar x = read <$> readFile x
Those two instances do entirely different things with their parameter. The only way the compiler has to select one of those instances is matching both type parameters. But there's no way to specify what the type parameter is. The class is just plain broken. There's no way to ever call the bar function, because you can never provide enough information for the compiler to resolve the class instance to use.
So why is the class definition not rejected by the compiler? Because you can sometimes make it work, with the FunctionalDependencies extension.
If a class has multiple parameters, but they're related, that information can sometimes be added to the definition of the class in a way that allows a class member to not use every type variable in the class's definition.
class Foo a b | a -> b where
bar :: String -> IO a
With that definition (which requires the FunctionalDependencies extension), you are telling the compiler that for any particular choice of a, there is only one valid choice of b. Attempting to even define both of the above instances would be a compile error.
Given that, the compiler knows that it can select the instance of Foo to use based only on the type a. In that case, bar can be called.
Splitting it in smaller typeclasses might be sufficient.
{-# LANGUAGE MultiParamTypeClasses #-}
class Fo a => Foo a b where
-- ...
foo :: a -> b -> ()
class Fo a where
bar :: a -> ()
baz :: Foo a b => a -> ()
baz = bar
Assuming you really want to use more than one instance for a given a (and so cannot use functional dependencies as others mentioned), one possibility which may or may not be right for you is to use a newtype tagged with a "phantom" type used only to guide type selection. This compiles:
{-# LANGUAGE MultiParamTypeClasses #-}
newtype Tagged t a = Tagged { unTagged :: a } -- Also defined in the tagged package
-- on Hackage
class Foo a b where
bar :: Tagged b a -> ()
baz :: Foo a b => Tagged b a -> ()
baz = bar
Then you will be able to wrap your values in such a way that you can give an explicit type annotation to select the right instance.
Another way of refactoring multi-parameter type classes when they get awkward is to use the TypeFamilies extension. Like FunctionalDependencies, this works well when you can reframe your class as having only a single parameter (or at least, fewer parameter), with the other types that are different from instance to instance being computed from the actual class parameters.
Generally I've found whenever I thought I needed a multi-parameter type class, the parameters almost always varied together rather than varying independently. In this situation it's much easier to pick one as "primary" and use some system for determining the others from it. Functional dependencies can do this as well as type families, but many find type families a lot easier to understand.
Here's an example:
{-# LANGUAGE TypeFamilies, FlexibleInstances #-}
class Glue a where
type Glued a
glue :: a -> a -> Glued a
instance Glue Char where
type Glued Char = String
glue x y = [x, y]
instance Glue String where
type Glued String = String
glue x y = x ++ y
glueBothWays :: Glue a => a -> a -> (Glued a, Glued a)
glueBothWays x y = (glue x y, glue y x)
The above declares a class Glue of types that can be glued together with the glue operation, and that have a corresponding type which is the result of the "gluing".
I then declared a couple of instances; Glued Char is String, Glued String is also just String.
Finally I wrote a function to show how you use Glued when you're being polymorphic over the instance of Glue you're using; basically you "call" Glued as a function in your type signatures; this means glueBothWays doesn't "know" what type Glued a is, but it knows how it corresponds to a. You can even use Glued Char as a type, if you know you're gluing Chars but don't want to hard-code the assumption that Glued Char = String.

How to define a class that allows uniform access to different records in Haskell?

I have two records that both have a field I want to extract for display. How do I arrange things so they can be manipulated with the same functions? Since they have different fields (in this case firstName and buildingName) that are their name fields, they each need some "adapter" code to map firstName to name. Here is what I have so far:
class Nameable a where
name :: a -> String
data Human = Human {
firstName :: String
}
data Building = Building {
buildingName :: String
}
instance Nameable Human where
name x = firstName x
instance Nameable Building where
-- I think the x is redundant here, i.e the following should work:
-- name = buildingName
name x = buildingName x
main :: IO ()
main = do
putStr $ show (map name items)
where
items :: (Nameable a) => [a]
items = [ Human{firstName = "Don"}
-- Ideally I want the next line in the array too, but that gives an
-- obvious type error at the moment.
--, Building{buildingName = "Empire State"}
]
This does not compile:
TypeTest.hs:23:14:
Couldn't match expected type `a' against inferred type `Human'
`a' is a rigid type variable bound by
the type signature for `items' at TypeTest.hs:22:23
In the expression: Human {firstName = "Don"}
In the expression: [Human {firstName = "Don"}]
In the definition of `items': items = [Human {firstName = "Don"}]
I would have expected the instance Nameable Human section would make this work. Can someone explain what I am doing wrong, and for bonus points what "concept" I am trying to get working, since I'm having trouble knowing what to search for.
This question feels similar, but I couldn't figure out the connection with my problem.
Consider the type of items:
items :: (Nameable a) => [a]
It's saying that for any Nameable type, items will give me a list of that type. It does not say that items is a list that may contain different Nameable types, as you might think. You want something like items :: [exists a. Nameable a => a], except that you'll need to introduce a wrapper type and use forall instead. (See: Existential type)
{-# LANGUAGE ExistentialQuantification #-}
data SomeNameable = forall a. Nameable a => SomeNameable a
[...]
items :: [SomeNameable]
items = [ SomeNameable $ Human {firstName = "Don"},
SomeNameable $ Building {buildingName = "Empire State"} ]
The quantifier in the data constructor of SomeNameable basically allows it to forget everything about exactly which a is used, except that it is Nameable. Therefore, you will only be allowed to use functions from the Nameable class on the elements.
To make this nicer to use, you can make an instance for the wrapper:
instance Nameable (SomeNameable a) where
name (SomeNameable x) = name x
Now you can use it like this:
Main> map name items
["Don", "Empire State"]
Everybody is reaching for either existential quantification or algebraic data types. But these are both overkill (well depending on your needs, ADTs might not be).
The first thing to note is that Haskell has no downcasting. That is, if you use the following existential:
data SomeNameable = forall a. Nameable a => SomeNameable a
then when you create an object
foo :: SomeNameable
foo = SomeNameable $ Human { firstName = "John" }
the information about which concrete type the object was made with (here Human) is forever lost. The only things we know are: it is some type a, and there is a Nameable a instance.
What is it possible to do with such a pair? Well, you can get the name of the a you have, and... that's it. That's all there is to it. In fact, there is an isomorphism. I will make a new data type so you can see how this isomorphism arises in cases when all your concrete objects have more structure than the class.
data ProtoNameable = ProtoNameable {
-- one field for each typeclass method
protoName :: String
}
instance Nameable ProtoNameable where
name = protoName
toProto :: SomeNameable -> ProtoNameable
toProto (SomeNameable x) = ProtoNameable { protoName = name x }
fromProto :: ProtoNameable -> SomeNameable
fromProto = SomeNameable
As we can see, this fancy existential type SomeNameable has the same structure and information as ProtoNameable, which is isomorphic to String, so when you are using this lofty concept SomeNameable, you're really just saying String in a convoluted way. So why not just say String?
Your items definition has exactly the same information as this definition:
items = [ "Don", "Empire State" ]
I should add a few notes about this "protoization": it is only as straightforward as this when the typeclass you are existentially quantifying over has a certain structure: namely when it looks like an OO class.
class Foo a where
method1 :: ... -> a -> ...
method2 :: ... -> a -> ...
...
That is, each method only uses a once as an argument. If you have something like Num
class Num a where
(+) :: a -> a -> a
...
which uses a in multiple argument positions, or as a result, then eliminating the existential is not as easy, but still possible. However my recommendation to do this changes from a frustration to a subtle context-dependent choice, because of the complexity and distant relationship of the two representations. However, every time I have seen existentials used in practice it is with the Foo kind of tyepclass, where it only adds needless complexity, so I quite emphatically consider it an antipattern. In most of these cases I recommend eliminating the entire class from your codebase and exclusively using the protoized type (after you give it a good name).
Also, if you do need to downcast, then existentials aren't your man. You can either use an algebraic data type, as others people have answered, or you can use Data.Dynamic (which is basically an existential over Typeable. But don't do that; a Haskell programmer resorting to Dynamic is ungentlemanlike. An ADT is the way to go, where you characterize all the possible types it could be in one place (which is necessary so that the functions that do the "downcasting" know that they handle all possible cases).
I like #hammar's answer, and you should also check out this article which provides another example.
But, you might want to think differently about your types. The boxing of Nameable into the SomeNameable data type usually makes me start thinking about whether a union type for the specific case is meaningful.
data Entity = H Human | B Building
instance Nameable Entity where ...
items = [H (Human "Don"), B (Building "Town Hall")]
I'm not sure why you want to use the same function for
getting the name of a Human and the name of a Building.
If their names are used in fundamentally different ways,
except maybe for simple things like printing them,
then you probably want two
different functions for that. The type system
will automatically guide you to choose the right function
to use in each situation.
But if having a name is something significant about the
whole purpose of your program, and a Human and a Building
are really pretty much the same thing in that respect as far as your program
is concerned, then you would define their type together:
data NameableThing =
Human { name :: String } |
Building { name :: String }
That gives you a polymorphic function name that works for
whatever particular flavor of NameableThing you happen to have,
without needing to get into type classes.
Usually you would use a type class for a different kind of situation:
if you have some kind of non-trivial operation that has the same purpose
but a different implementation for several different types.
Even then, it's often better to use some other approach instead, like
passing a function as a parameter (a "higher order function", or "HOF").
Haskell type classes are a beautiful and powerful tool, but they are totally
different than what is called a "class" in object-oriented languages,
and they are used far less often.
And I certainly don't recommend complicating your program by using an advanced
extension to Haskell like Existential Qualification just to fit into
an object-oriented design pattern.
You can try to use Existentially Quanitified types and do it like this:
data T = forall a. Nameable a => MkT a
items = [MkT (Human "bla"), MkT (Building "bla")]
I've just had a look at the code that this question is abstracting from. For this, I would recommend merging the Task and RecurringTaskDefinition types:
data Task
= Once
{ name :: String
, scheduled :: Maybe Day
, category :: TaskCategory
}
| Recurring
{ name :: String
, nextOccurrence :: Day
, frequency :: RecurFrequency
}
type ProgramData = [Task] -- don't even need a new data type for this any more
Then, the name function works just fine on either type, and the functions you were complaining about like deleteTask and deleteRecurring don't even need to exist -- you can just use the standard delete function as usual.

Resources