what's the difference between gcc __sync_bool_compare_and_swap and cmpxchg? - linux

to use cas, gcc provides some useful functions such as
__sync_bool_compare_and_swap
but we can also use asm code like cmpxchg
bool ret;
__asm__ __volatile__(
"lock cmpxchg16b %1;\n"
"sete %0;\n"
:"=m"(ret),"+m" (*(volatile pointer_t *) (addr))
:"a" (old_value.ptr), "d" (old_value.tag), "b" (new_value.ptr), "c" (new_value.tag));
return ret;
I have grep the source code of gcc 4.6.3, and found that __sync_bool_compare_and_swap is implemented use
typedef int (__kernel_cmpxchg_t) (int oldval, int newval, int *ptr);
#define __kernel_cmpxchg (*(__kernel_cmpxchg_t *) 0xffff0fc0)
it seems that 0xffff0fc0 is the adress of some kernel helper functions
but in gcc 4.1.2 , there is no such codes like __kernel_cmpxchg_t, and I can't find the implementation of __sync_bool_compare_and_swap.
so what's the difference between __sync_bool_compare_and_swap and cmpxchg?
is __sync_bool_compare_and_swap implemented by cmpxchg?
and with kernel helper function __kernel_cmpxchg_t, is it implementd by cmpxchg?
thanks!

I think the __kernel_cmpxchg is a fallback which Linux makes available on some architectures which don't have native hardware support for CAS. E.g. ARMv5 or something like that.
Usually, GCC inline expands the _sync* builtins. Unless you're really interested in GCC internals, an easier way to find out what it does is to make a simple C example and look at the ASM the compiler generates.
Consider
#include <stdbool.h>
bool my_cmpchg(int *ptr, int oldval, int newval)
{
return __sync_bool_compare_and_swap(ptr, oldval, newval);
}
Compiling this on an x86_64 Linux machine with GCC 4.4 the following asm is generated:
my_cmpchg:
.LFB0:
.cfi_startproc
movl %esi, %eax
lock cmpxchgl %edx, (%rdi)
sete %al
ret
.cfi_endproc

Related

RIP register doesn't understand valid memory address [duplicate]

I want a simple C method to be able to run hex bytecode on a Linux 64 bit machine. Here's the C program that I have:
char code[] = "\x48\x31\xc0";
#include <stdio.h>
int main(int argc, char **argv)
{
int (*func) ();
func = (int (*)()) code;
(int)(*func)();
printf("%s\n","DONE");
}
The code that I am trying to run ("\x48\x31\xc0") I obtained by writting this simple assembly program (it's not supposed to really do anything)
.text
.globl _start
_start:
xorq %rax, %rax
and then compiling and objdump-ing it to obtain the bytecode.
However, when I run my C program I get a segmentation fault. Any ideas?
Machine code has to be in an executable page. Your char code[] is in the read+write data section, without exec permission, so the code cannot be executed from there.
Here is a simple example of allocating an executable page with mmap:
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
int main ()
{
char code[] = {
0x8D, 0x04, 0x37, // lea eax,[rdi+rsi]
0xC3 // ret
};
int (*sum) (int, int) = NULL;
// allocate executable buffer
sum = mmap (0, sizeof(code), PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
// copy code to buffer
memcpy (sum, code, sizeof(code));
// doesn't actually flush cache on x86, but ensure memcpy isn't
// optimized away as a dead store.
__builtin___clear_cache (sum, sum + sizeof(sum)); // GNU C
// run code
int a = 2;
int b = 3;
int c = sum (a, b);
printf ("%d + %d = %d\n", a, b, c);
}
See another answer on this question for details about __builtin___clear_cache.
Until recent Linux kernel versions (sometime before 5.4), you could simply compile with gcc -z execstack - that would make all pages executable, including read-only data (.rodata), and read-write data (.data) where char code[] = "..." goes.
Now -z execstack only applies to the actual stack, so it currently works only for non-const local arrays. i.e. move char code[] = ... into main.
See Linux default behavior against `.data` section for the kernel change, and Unexpected exec permission from mmap when assembly files included in the project for the old behaviour: enabling Linux's READ_IMPLIES_EXEC process for that program. (In Linux 5.4, that Q&A shows you'd only get READ_IMPLIES_EXEC for a missing PT_GNU_STACK, like a really old binary; modern GCC -z execstack would set PT_GNU_STACK = RWX metadata in the executable, which Linux 5.4 would handle as making only the stack itself executable. At some point before that, PT_GNU_STACK = RWX did result in READ_IMPLIES_EXEC.)
The other option is to make system calls at runtime to copy into an executable page, or change permissions on the page it's in. That's still more complicated than using a local array to get GCC to copy code into executable stack memory.
(I don't know if there's an easy way to enable READ_IMPLIES_EXEC under modern kernels. Having no GNU-stack attribute at all in an ELF binary does that for 32-bit code, but not 64-bit.)
Yet another option is __attribute__((section(".text"))) const char code[] = ...;
Working example: https://godbolt.org/z/draGeh.
If you need the array to be writeable, e.g. for shellcode that inserts some zeros into strings, you could maybe link with ld -N. But probably best to use -z execstack and a local array.
Two problems in the question:
exec permission on the page, because you used an array that will go in the noexec read+write .data section.
your machine code doesn't end with a ret instruction so even if it did run, execution would fall into whatever was next in memory instead of returning.
And BTW, the REX prefix is totally redundant. "\x31\xc0" xor eax,eax has exactly the same effect as xor rax,rax.
You need the page containing the machine code to have execute permission. x86-64 page tables have a separate bit for execute separate from read permission, unlike legacy 386 page tables.
The easiest way to get static arrays to be in read+exec memory was to compile with gcc -z execstack. (Used to make the stack and other sections executable, now only the stack).
Until recently (2018 or 2019), the standard toolchain (binutils ld) would put section .rodata into the same ELF segment as .text, so they'd both have read+exec permission. Thus using const char code[] = "..."; was sufficient for executing manually-specified bytes as data, without execstack.
But on my Arch Linux system with GNU ld (GNU Binutils) 2.31.1, that's no longer the case. readelf -a shows that the .rodata section went into an ELF segment with .eh_frame_hdr and .eh_frame, and it only has Read permission. .text goes in a segment with Read + Exec, and .data goes in a segment with Read + Write (along with the .got and .got.plt). (What's the difference of section and segment in ELF file format)
I assume this change is to make ROP and Spectre attacks harder by not having read-only data in executable pages where sequences of useful bytes could be used as "gadgets" that end with the bytes for a ret or jmp reg instruction.
// TODO: use char code[] = {...} inside main, with -z execstack, for current Linux
// Broken on recent Linux, used to work without execstack.
#include <stdio.h>
// can be non-const if you use gcc -z execstack. static is also optional
static const char code[] = {
0x8D, 0x04, 0x37, // lea eax,[rdi+rsi] // retval = a+b;
0xC3 // ret
};
static const char ret0_code[] = "\x31\xc0\xc3"; // xor eax,eax ; ret
// the compiler will append a 0 byte to terminate the C string,
// but that's fine. It's after the ret.
int main () {
// void* cast is easier to type than a cast to function pointer,
// and in C can be assigned to any other pointer type. (not C++)
int (*sum) (int, int) = (void*)code;
int (*ret0)(void) = (void*)ret0_code;
// run code
int c = sum (2, 3);
return ret0();
}
On older Linux systems: gcc -O3 shellcode.c && ./a.out (Works because of const on global/static arrays)
On Linux before 5.5 (or so) gcc -O3 -z execstack shellcode.c && ./a.out (works because of -zexecstack regardless of where your machine code is stored). Fun fact: gcc allows -zexecstack with no space, but clang only accepts clang -z execstack.
These also work on Windows, where read-only data goes in .rdata instead of .rodata.
The compiler-generated main looks like this (from objdump -drwC -Mintel). You can run it inside gdb and set breakpoints on code and ret0_code
(I actually used gcc -no-pie -O3 -zexecstack shellcode.c hence the addresses near 401000
0000000000401020 <main>:
401020: 48 83 ec 08 sub rsp,0x8 # stack aligned by 16 before a call
401024: be 03 00 00 00 mov esi,0x3
401029: bf 02 00 00 00 mov edi,0x2 # 2 args
40102e: e8 d5 0f 00 00 call 402008 <code> # note the target address in the next page
401033: 48 83 c4 08 add rsp,0x8
401037: e9 c8 0f 00 00 jmp 402004 <ret0_code> # optimized tailcall
Or use system calls to modify page permissions
Instead of compiling with gcc -zexecstack, you can instead use mmap(PROT_EXEC) to allocate new executable pages, or mprotect(PROT_EXEC) to change existing pages to executable. (Including pages holding static data.) You also typically want at least PROT_READ and sometimes PROT_WRITE, of course.
Using mprotect on a static array means you're still executing the code from a known location, maybe making it easier to set a breakpoint on it.
On Windows you can use VirtualAlloc or VirtualProtect.
Telling the compiler that data is executed as code
Normally compilers like GCC assume that data and code are separate. This is like type-based strict aliasing, but even using char* doesn't make it well-defined to store into a buffer and then call that buffer as a function pointer.
In GNU C, you also need to use __builtin___clear_cache(buf, buf + len) after writing machine code bytes to a buffer, because the optimizer doesn't treat dereferencing a function pointer as reading bytes from that address. Dead-store elimination can remove the stores of machine code bytes into a buffer, if the compiler proves that the store isn't read as data by anything. https://codegolf.stackexchange.com/questions/160100/the-repetitive-byte-counter/160236#160236 and https://godbolt.org/g/pGXn3B has an example where gcc really does do this optimization, because gcc "knows about" malloc.
(And on non-x86 architectures where I-cache isn't coherent with D-cache, it actually will do any necessary cache syncing. On x86 it's purely a compile-time optimization blocker and doesn't expand to any instructions itself.)
Re: the weird name with three underscores: It's the usual __builtin_name pattern, but name is __clear_cache.
My edit on #AntoineMathys's answer added this.
In practice GCC/clang don't "know about" mmap(MAP_ANONYMOUS) the way they know about malloc. So in practice the optimizer will assume that the memcpy into the buffer might be read as data by the non-inline function call through the function pointer, even without __builtin___clear_cache(). (Unless you declared the function type as __attribute__((const)).)
On x86, where I-cache is coherent with data caches, having the stores happen in asm before the call is sufficient for correctness. On other ISAs, __builtin___clear_cache() will actually emit special instructions as well as ensuring the right compile-time ordering.
It's good practice to include it when copying code into a buffer because it doesn't cost performance, and stops hypothetical future compilers from breaking your code. (e.g. if they do understand that mmap(MAP_ANONYMOUS) gives newly-allocated anonymous memory that nothing else has a pointer to, just like malloc.)
With current GCC, I was able to provoke GCC into really doing an optimization we don't want by using __attribute__((const)) to tell the optimizer sum() is a pure function (that only reads its args, not global memory). GCC then knows sum() can't read the result of the memcpy as data.
With another memcpy into the same buffer after the call, GCC does dead-store elimination into just the 2nd store after the call. This results in no store before the first call so it executes the 00 00 add [rax], al bytes, segfaulting.
// demo of a problem on x86 when not using __builtin___clear_cache
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
int main ()
{
char code[] = {
0x8D, 0x04, 0x37, // lea eax,[rdi+rsi]
0xC3 // ret
};
__attribute__((const)) int (*sum) (int, int) = NULL;
// copy code to executable buffer
sum = mmap (0,sizeof(code),PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANON,-1,0);
memcpy (sum, code, sizeof(code));
//__builtin___clear_cache(sum, sum + sizeof(code));
int c = sum (2, 3);
//printf ("%d + %d = %d\n", a, b, c);
memcpy(sum, (char[]){0x31, 0xc0, 0xc3, 0}, 4); // xor-zero eax, ret, padding for a dword store
//__builtin___clear_cache(sum, sum + 4);
return sum(2,3);
}
Compiled on the Godbolt compiler explorer with GCC9.2 -O3
main:
push rbx
xor r9d, r9d
mov r8d, -1
mov ecx, 34
mov edx, 7
mov esi, 4
xor edi, edi
sub rsp, 16
call mmap
mov esi, 3
mov edi, 2
mov rbx, rax
call rax # call before store
mov DWORD PTR [rbx], 12828721 # 0xC3C031 = xor-zero eax, ret
add rsp, 16
pop rbx
ret # no 2nd call, CSEd away because const and same args
Passing different args would have gotten another call reg, but even with __builtin___clear_cache the two sum(2,3) calls can CSE. __attribute__((const)) doesn't respect changes to the machine code of a function. Don't do it. It's safe if you're going to JIT the function once and then call many times, though.
Uncommenting the first __clear_cache results in
mov DWORD PTR [rax], -1019804531 # lea; ret
call rax
mov DWORD PTR [rbx], 12828721 # xor-zero; ret
... still CSE and use the RAX return value
The first store is there because of __clear_cache and the sum(2,3) call. (Removing the first sum(2,3) call does let dead-store elimination happen across the __clear_cache.)
The second store is there because the side-effect on the buffer returned by mmap is assumed to be important, and that's the final value main leaves.
Godbolt's ./a.out option to run the program still seems to always fail (exit status of 255); maybe it sandboxes JITing? It works on my desktop with __clear_cache and crashes without.
mprotect on a page holding existing C variables.
You can also give a single existing page read+write+exec permission. This is an alternative to compiling with -z execstack
You don't need __clear_cache on a page holding read-only C variables because there's no store to optimize away. You would still need it for initializing a local buffer (on the stack). Otherwise GCC will optimize away the initializer for this private buffer that a non-inline function call definitely doesn't have a pointer to. (Escape analysis). It doesn't consider the possibility that the buffer might hold the machine code for the function unless you tell it that via __builtin___clear_cache.
#include <stdio.h>
#include <sys/mman.h>
#include <stdint.h>
// can be non-const if you want, we're using mprotect
static const char code[] = {
0x8D, 0x04, 0x37, // lea eax,[rdi+rsi] // retval = a+b;
0xC3 // ret
};
static const char ret0_code[] = "\x31\xc0\xc3";
int main () {
// void* cast is easier to type than a cast to function pointer,
// and in C can be assigned to any other pointer type. (not C++)
int (*sum) (int, int) = (void*)code;
int (*ret0)(void) = (void*)ret0_code;
// hard-coding x86's 4k page size for simplicity.
// also assume that `code` doesn't span a page boundary and that ret0_code is in the same page.
uintptr_t page = (uintptr_t)code & -4095ULL; // round down
mprotect((void*)page, 4096, PROT_READ|PROT_EXEC|PROT_WRITE); // +write in case the page holds any writeable C vars that would crash later code.
// run code
int c = sum (2, 3);
return ret0();
}
I used PROT_READ|PROT_EXEC|PROT_WRITE in this example so it works regardless of where your variable is. If it was a local on the stack and you left out PROT_WRITE, call would fail after making the stack read only when it tried to push a return address.
Also, PROT_WRITE lets you test shellcode that self-modifies, e.g. to edit zeros into its own machine code, or other bytes it was avoiding.
$ gcc -O3 shellcode.c # without -z execstack
$ ./a.out
$ echo $?
0
$ strace ./a.out
...
mprotect(0x55605aa3f000, 4096, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
exit_group(0) = ?
+++ exited with 0 +++
If I comment out the mprotect, it does segfault with recent versions of GNU Binutils ld which no longer put read-only constant data into the same ELF segment as the .text section.
If I did something like ret0_code[2] = 0xc3;, I would need __builtin___clear_cache(ret0_code+2, ret0_code+2) after that to make sure the store wasn't optimized away, but if I don't modify the static arrays then it's not needed after mprotect. It is needed after mmap+memcpy or manual stores, because we want to execute bytes that have been written in C (with memcpy).
You need to include the assembly in-line via a special compiler directive so that it'll properly end up in a code segment. See this guide, for example: http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
Your machine code may be all right, but your CPU objects.
Modern CPUs manage memory in segments. In normal operation, the operating system loads a new program into a program-text segment and sets up a stack in a data segment. The operating system tells the CPU never to run code in a data segment. Your code is in code[], in a data segment. Thus the segfault.
This will take some effort.
Your code variable is stored in the .data section of your executable:
$ readelf -p .data exploit
String dump of section '.data':
[ 10] H1À
H1À is the value of your variable.
The .data section is not executable:
$ readelf -S exploit
There are 30 section headers, starting at offset 0x1150:
Section Headers:
[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[...]
[24] .data PROGBITS 0000000000601010 00001010
0000000000000014 0000000000000000 WA 0 0 8
All 64-bit processors I'm familiar with support non-executable pages natively in the pagetables. Most newer 32-bit processors (the ones that support PAE) provide enough extra space in their pagetables for the operating system to emulate hardware non-executable pages. You'll need to run either an ancient OS or an ancient processor to get a .data section marked executable.
Because these are just flags in the executable, you ought to be able to set the X flag through some other mechanism, but I don't know how to do so. And your OS might not even let you have pages that are both writable and executable.
You may need to set the page executable before you may call it.
On MS-Windows, see the VirtualProtect -function.
URL: http://msdn.microsoft.com/en-us/library/windows/desktop/aa366898%28v=vs.85%29.aspx
Sorry, I couldn't follow above examples which are complicated.
So, I created an elegant solution for executing hex code from C.
Basically, you could use asm and .word keywords to place your instructions in hex format.
See below example:
asm volatile(".rept 1024\n"
CNOP
".endr\n");
where CNOP is defined as below:
#define ".word 0x00010001 \n"
Basically, c.nop instruction was not supported by my current assembler. So, I defined CNOP as the hex equivalent of c.nop with proper syntax and used inside asm, with which I was aware of.
.rept <NUM> .endr will basically, repeat the instruction NUM times.
This solution is working and verified.

How can I select a static library to be linked while ARM cross compiling?

I have an ARM cross compiler in Ubuntu(arm-linux-gnueabi-gcc) and the default archtecture is ARMv7. However, I want to compile an ARMv5 binary. I do this by giving the compiler the -march=armv5te option.
So far, so good. Since my ARM system uses BusyBox, I have to compile my binary statically linked. So I give gcc the -static option.
However, I have a problem with libc.a which the linker links to my ARMv5 binary. This file is compiled with the ARMv7 architecture option. So, even if I cross-compile my ARM binary with ARMv5, I can't run it on my BusyBox based ARMv5 box.
How can I solve this problem?
Where can I get the ARMv5 libc.a static library, and how can I link it?
Thank you in advance.
You have two choices,
Get the right compiler.
Write your own 'C' Library.
Get the right compiler.
You are always safest to have a compiler match your system. This applies to x86 Linux and various distributions. You are lucky if different compilers work. It is more difficult when you cross-compile as often the compiler will not be automatically synced. Try to run a program on a 1999 x86 Mandrake Linux compiled on your 2014 Ubuntu system.
As well as instruction compatibility (which you have identified), there are ABI and OS dependencies. Specifically, the armv7 is most likely hardfloat (has floating point FPU and register call convention) and you need a softfloat (emulated FPU). The specific glibc (or ucLibc) has specific calls and expectations of the Linux OS. For instance, the way threads works has changed over time.
Write your own
You can always use -fno-builtin and -ffreestanding as well as -static. Then you can not use any libc functions, but you can program them your self.
There are external source, like Mark Martinec's snprintf and building blocks like write() which is easy to implement,
#define _SYS_IOCTL_H 1
#include <linux/unistd.h>
#include <linux/ioctl.h>
static inline int write(int fd, void *buf, int len)
{
int rval;
asm volatile ("mov r0, %1\n\t"
"mov r1, %2\n\t"
"mov r2, %3\n\t"
"mov r7, %4\n\t"
"swi #0\n\t"
"mov %0, r0\n\t"
: "=r" (rval)
: "r" (fd),
"r" (buf),
"r" (len),
"Ir" (__NR_write)
: "r0", "r1", "r2", "r7");
return rval;
}
static inline void exit(int status)
{
asm volatile ("mov r0, %0\n\t"
"mov r7, %1\n\t"
"swi #0\n\t"
: : "r" (status),
"Ir" (__NR_exit)
: "r0", "r7");
}
You have to add your own start-up machinery taken care of by the 'C' library,
/* Called from assembler startup. */
int main (int argc, char*argv[])
{
write(STDOUT, "Hello world\n", sizeof("Hello world\n"));
return 0;
}
/* Wrapper for main return code. */
void __attribute__ ((unused)) estart (int argc, char*argv[])
{
int rval = main(argc,argv);
exit(rval);
}
/* Setup arguments for estart [like main()]. */
void __attribute__ ((naked)) _start (void)
{
asm(" sub lr, lr, lr\n" /* Clear the link register. */
" ldr r0, [sp]\n" /* Get argc... */
" add r1, sp, #4\n" /* ... and argv ... */
" b estart\n" /* Let's go! */
);
}
If this is too daunting, because you need to implement a lot of functionality, then you can try and get various library source and rebuild them with -fno-builtin and make sure that the libraries do not get linked with the Ubuntu libraries, which are incompatible.
Projects like crosstool-ng can allow you to build a correct compiler (maybe with more advanced code generation) that suits the armv5 system exactly. This may seem like a pain, but the alternatives above aren't easy either.

GCC Segmentation fault with -O1 and inline assembler

I have detected a strange segmentation fault in my code and I would like to hear your opinion if that could be a GCC bug or is just my fault!
The function looks like that:
void testMMX( ... ) {
unsigned long a = ...;
unsigned char const* b = ...;
unsigned long c = ...;
__asm__ volatile (
"pusha;"
);
__asm__ volatile ( "mov %0, %%eax;" : : "m"( a ) : "%eax" ); // with "r"( a ) it just works fine!
__asm__ volatile ( "add %0, %%eax;" : : "m"( b ) : "%eax" );
__asm__ volatile ( "mov %0, %%esi;" : : "m"( c ) : "%eax", "%esi" );
__asm__ volatile (
"sub %eax, %esi;"
"dec %esi;"
"movd (%esi), %mm0;"
"popa;"
);
}
If I compile this with -O0 it just works fine. But it SegFaults with -O1 and -O2. It took me a long time to figure out that this segfault was caused by frame pointer omission. The pusha instruction increases the stack size by 4*8=32 byte (x86_32) and therefore ESP should be increases as well. But gcc does not recognize this. If I add the ESP fix manually
__asm__("add $32, %esp")
or use the "-fno-omit-frame-pointer" flag in gcc I can compile and run it with -O1 and -O2 without any errors!
So my question now is: why does gcc not adjust the ESP with any push/pop inline assembler operations if frame-pointer-omission is enabled? Is this a gcc bug? Is gcc even capable of detecting this? Am I missing something?
It would be very interesting to solve this.
Thanks in advance!
No - gcc is not capable of detecting this. It doesn't perform any analysis of the instructions that appear in the asm block. It is your responsibility to inform the compiler of any side effects. Can you explain what test you are performing?
Also, you should consider using a single asm block for this code; volatile may prevent reordering of the asm blocks, but you cannot assume this yields consecutive instructions.

Inline assembly in Haskell

Can I somehow use inline assembly in Haskell (similar to what GCC does for C)?
I want to compare my Haskell code to the reference implementation (ASM) and this seems the most straightforward way. I guess I could just call Haskell from C and use GCC inline assembly, but I'm still interested if I can do it the other way around.
(I'm on Linux/x86)
There are two ways:
Call C via the FFI, and use inline assembly on the C side.
Write a CMM fragment that calls C (without the FFI), and uses inlined assembly.
Both solutions use inline assembly on the C side. The former is the most idiomatic. Here's an example, from the rdtsc package:
cycles.h:
static __inline__ ticks getticks(void)
{
unsigned int tbl, tbu0, tbu1;
do {
__asm__ __volatile__ ("mftbu %0" : "=r"(tbu0));
__asm__ __volatile__ ("mftb %0" : "=r"(tbl));
__asm__ __volatile__ ("mftbu %0" : "=r"(tbu1));
} while (tbu0 != tbu1);
return (((unsigned long long)tbu0) << 32) | tbl;
}
rdtsc.c:
unsigned long long rdtsc(void)
{
return getticks();
}
rdtsc.h:
unsigned long long rdtsc(void);
rdtsc.hs:
foreign import ccall unsafe "rdtsc.h" rdtsc :: IO Word64
Finally:
A slightly non-obvious solution is to use the LLVM or Harpy packages to call some generated assembly.

Linux assembler error "impossible constraint in ‘asm’"

I'm starting with assembler under Linux. I have saved the following code as testasm.c
and compiled it with: gcc testasm.c -otestasm
The compiler replies: "impossible constraint in ‘asm’".
#include <stdio.h>
int main(void)
{
int foo=10,bar=15;
__asm__ __volatile__ ("addl %%ebx,%%eax"
: "=eax"(foo)
: "eax"(foo), "ebx"(bar)
: "eax"
);
printf("foo = %d", foo);
return 0;
}
How can I resolve this problem?
(I've copied the example from here.)
Debian Lenny, kernel 2.6.26-2-amd64
gcc version 4.3.2 (Debian 4.3.2-1.1)
Resolution:
See the accepted answer - it seems the 'modified' clause is not supported any more.
__asm__ __volatile__ ("addl %%ebx,%%eax" : "=a"(foo) : "a"(foo), "b"(bar));
seems to work. I believe that the syntax for register constraints changed at some point, but it's not terribly well documented. I find it easier to write raw assembly and avoid the hassle.
The constraints are single letters (possibly with extra decorations), and you can specify several alternatives (i.e., an inmediate operand or register is "ir"). So the constraint "eax" means constraints "e" (signed 32-bit integer constant), "a" (register eax), or "x" (any SSE register). That is a bit different that what OP meant... and output to an "e" clearly doesn't make any sense. Also, if some operand (in this case an input and an output) must be the same as another, you refer to it by a number constraint. There is no need to say eax will be clobbered, it is an output. You can refer to the arguments in the inline code by %0, %1, ..., no need to use explicit register names. So the correct version for the code as intended by OP would be:
#include <stdio.h>
int main(void)
{
int foo=10, bar=15;
__asm__ __volatile__ (
"addl %2, %0"
: "=a" (foo)
: "0" (foo), "b" (bar)
);
printf("foo = %d", foo);
return 0;
}
A better solution would be to allow %2 to be anything, and %0 a register (as x86 allows, but you'd have to check your machine manual):
#include <stdio.h>
int main(void)
{
int foo=10, bar=15;
__asm__ __volatile__ (
"addl %2, %0"
: "=r" (foo)
: "0" (foo), "g" (bar)
);
printf("foo = %d", foo);
return 0;
}
If one wants to use multiline, then this will also work..
__asm__ __volatile__ (
"addl %%ebx,%%eax; \
addl %%eax, %%eax;"
: "=a"(foo)
: "a"(foo), "b"(bar)
);
'\' should be added for the compiler to accept a multiline string (the instructions).

Resources