I'm doing a project in liver tumor classification. Actually I initially used Region Growing method for liver segmentation and from that I segmented tumor using FCM.
I,then, obtained the texture features using Gray Level Co-occurence Matrix. My output for that was
stats =
autoc: [1.857855266614132e+000 1.857955341199538e+000]
contr: [5.103143332457753e-002 5.030548650257343e-002]
corrm: [9.512661919561399e-001 9.519459060378332e-001]
corrp: [9.512661919561385e-001 9.519459060378338e-001]
cprom: [7.885631654779597e+001 7.905268525471267e+001]
Now how should I give this as an input to the SVM program.
function [itr] = multisvm( T,C,tst )
%MULTISVM(2.0) classifies the class of given training vector according to the
% given group and gives us result that which class it belongs.
% We have also to input the testing matrix
%Inputs: T=Training Matrix, C=Group, tst=Testing matrix
%Outputs: itr=Resultant class(Group,USE ROW VECTOR MATRIX) to which tst set belongs
%----------------------------------------------------------------------%
% IMPORTANT: DON'T USE THIS PROGRAM FOR CLASS LESS THAN 3, %
% OTHERWISE USE svmtrain,svmclassify DIRECTLY or %
% add an else condition also for that case in this program. %
% Modify required data to use Kernel Functions and Plot also%
%----------------------------------------------------------------------%
% Date:11-08-2011(DD-MM-YYYY) %
% This function for multiclass Support Vector Machine is written by
% ANAND MISHRA (Machine Vision Lab. CEERI, Pilani, India)
% and this is free to use. email: anand.mishra2k88#gmail.com
% Updated version 2.0 Date:14-10-2011(DD-MM-YYYY)
u=unique(C);
N=length(u);
c4=[];
c3=[];
j=1;
k=1;
if(N>2)
itr=1;
classes=0;
cond=max(C)-min(C);
while((classes~=1)&&(itr<=length(u))&& size(C,2)>1 && cond>0)
%This while loop is the multiclass SVM Trick
c1=(C==u(itr));
newClass=c1;
svmStruct = svmtrain(T,newClass);
classes = svmclassify(svmStruct,tst);
% This is the loop for Reduction of Training Set
for i=1:size(newClass,2)
if newClass(1,i)==0;
c3(k,:)=T(i,:);
k=k+1;
end
end
T=c3;
c3=[];
k=1;
% This is the loop for reduction of group
for i=1:size(newClass,2)
if newClass(1,i)==0;
c4(1,j)=C(1,i);
j=j+1;
end
end
C=c4;
c4=[];
j=1;
cond=max(C)-min(C); % Condition for avoiding group
%to contain similar type of values
%and the reduce them to process
% This condition can select the particular value of iteration
% base on classes
if classes~=1
itr=itr+1;
end
end
end
end
Kindly guide me.
Images:
You have to take all the feature values you get and concatenate them into a feature vector. Then for the SVM the features should be normalized so that the values in each dimension vary between -1 and 1, if I remember correctly. I think libsvm has a function for doing the normalization.
So assuming your feature vector ends up having N dimensions, and you have M training instances, your training set should be an M x N matrix. Then if you have P test instances, your test set should be a P x N matrix.
May I also suggest you a very popular implementation of SVM, called SVMLight http://svmlight.joachims.org/.
You can find examples on the website on how to use it. Mex-matlav wrapper for it is also available.
As pointed out by Dima, you need to concatenate the features?
btw can you tell me which dataset are you using for liver-tumor-classification?
Is it publicly available for download?
Related
I've been trying to understand how does a model trained with support vector machines for regression predict values. I have trained a model with the sklearn.svm.SVR, and now I'm wondering how to "manually" predict the outcome of an input.
Some background - the model is trained with kernel SVR, with RBF function and uses the dual formulation. So now I have arrays of the dual coefficients, the indexes of the support vectors, and the support vectors themselves.
I found the function which is used to fit the hyperplane but I've been unsuccessful in applying that to "manually" predict outcomes without the function .predict.
The few things I tried all include the dot products of the input (features) array, and all the support vectors.
If anyone ever needs this, I've managed to understand the equation and code it in python.
The following is the used equation for the dual formulation:
where N is the number of observations, and αi multiplied by yi are the dual coefficients found from the model's attributed model.dual_coef_. The xiT are some of the observations used for training (support vectors) accessed by the attribute model.support_vectors_ (transposed to allow multiplication of the two matrices), x is the input vector containing a value for each feature (its the one observation for which we want to get prediction), and b is the intercept accessed by model.intercept_.
The xiT and x, however, are the observations transformed in a higher-dimensional space, as explained by mery in this post.
The calculation of the transformation by RBF can be either applied manually step by stem or by using the sklearn.metrics.pairwise.rbf_kernel.
With the latter, the code would look like this (my case shows I have 589 support vectors, and 40 features).
First we access the coefficients and vectors:
support_vectors = model.support_vectors_
dual_coefs = model.dual_coef_[0]
Then:
pred = (np.matmul(dual_coefs.reshape(1,589),
rbf_kernel(support_vectors.reshape(589,40),
Y=input_array.reshape(1,40),
gamma=model.get_params()['gamma']
)
)
+ model.intercept_
)
If the RBF funcion needs to be applied manually, step by step, then:
vrbf = support_vectors.reshape(589,40) - input_array.reshape(1,40)
pred = (np.matmul(dual_coefs.reshape(1,589),
np.diag(np.exp(-model.get_params()['gamma'] *
np.matmul(vrbf, vrbf.T)
)
).reshape(589,1)
)
+ model.intercept_
)
I placed the .reshape() function even where it is not necessary, just to emphasize the shapes for the matrix operations.
These both give the same results as model.predict(input_array)
I used log-transformed data (dependent varibale=count) in my generalised additive model (using mgcv) and tried to plot the response by using "trans=plogis" as for logistic GAMs but the results don't seem right. Am I forgetting something here? When I used linear models for my data first, I plotted the least-square means. Any idea how I could plot the output of my GAMs in a more interpretable way other than on the log scale?
Cheers
Are you running a logistic regression for count data? Logistic regression is normally a binary variable or a proportion of binary outcomes.
That being said, the real question here is that you want to backtransform a variable that was fit on the log scale back to the original scale for plotting. That can be easily done using the itsadug package. I've simulated some silly data here just to show the code required.
With itsadug, you can visually inspect many aspects of GAM models. I'd encourage you to look at this: https://cran.r-project.org/web/packages/itsadug/vignettes/inspect.html
The transform argument of plot_smooth() can also be used with custom functions written in R. This can be useful if you have both centred and logged a dependent variable.
library(mgcv)
library(itsadug)
# Setting seed so it's reproducible
set.seed(123)
# Generating 50 samples from a uniform distribution
x <- runif(50, min = 20, max = 50)
# Taking the sin of x to create a dependent variable
y <- sin(x)
# Binding them to a dataframe
d <- data.frame(x, y)
# Logging the dependent variable after adding a constant to prevent negative values
d$log_y <- log(d$y + 1)
# Fitting a GAM to the transformed dependent variable
model_fit <- gam(log_y ~ s(x),
data = d)
# Using the plot_smooth function from itsadug to backtransform to original y scale
plot_smooth(model_fit,
view = "x",
transform = exp)
You can specify the trans function for back-transforming as :trans = function(x){exp(coef(gam)[1]+x)}, where gam is your fitted model, and coef(gam)[1] is the intercept.
I want to compute the loss between the GT and the output of my network (called TDN) in the frequency domain by computing 2D FFT. The tensors are of dim batch x channel x height x width
amp_ip, phase_ip = 2DFFT(TDN(ip))
amp_gt, phase_gt = 2DFFT(TDN(gt))
loss = ||amp_ip - amp_gt||
For computing FFT I can use torch.fft(ip, signal_ndim = 2). But the output is in a + j b format i.e rectangular coordinates and NOT decomposed into phase and amplitude. How can I convert a + j b into amp exp(j phase) format in PyTorch? A side concern is also if signal_ndims be kept 2 to compute 2D FFT or something else?
The following description, which describes the loss that I plan to implement, maybe useful.
The question is answered by the GITHUB code file shared by #akshayk07 in the comments. Extracting the relevant information from that code, the concise answer to the question is,
fft_im = torch.rfft(img.clone(), signal_ndim=2, onesided=False)
# fft_im: size should be bx3xhxwx2
fft_amp = fft_im[:,:,:,:,0]**2 + fft_im[:,:,:,:,1]**2
fft_amp = torch.sqrt(fft_amp) # this is the amplitude
fft_pha = torch.atan2( fft_im[:,:,:,:,1], fft_im[:,:,:,:,0] ) # this is the phase
As of PyTorch 1.7.1 choose torch.rfft over torch.fft as the latter does not work off the shelf with real valued tensors propagating in CNNs. Also a good idea will be ti use the normalisation flag of torch.rfft.
I am doing a project on multiclass semantic segmentation. I have formulated a model that outputs pretty descent segmented images by decreasing the loss value. However, I cannot evaluate the model performance in metrics, such as meanIoU or Dice coefficient.
In case of binary semantic segmentation it was easy just to set the threshold of 0.5, to classify the outputs as an object or background, but it does not work in the case of multiclass semantic segmentation. Could you please tell me how to obtain model performance on the aforementioned metrics? Any help will be highly appreciated!
By the way, I am using PyTorch framework and CamVid dataset.
If anyone is interested in this answer, please also look at this issue. The author of the issue points out that mIoU can be computed in a different way (and that method is more accepted in literature). So, consider that before using the implementation for any formal publication.
Basically, the other method suggested by the issue-poster is to separately accumulate the intersections and unions over the entire dataset and divide them at the final step. The method in the below original answer computes intersection and union for a batch of images, then divides them to get IoU for the current batch, and then takes a mean of the IoUs over the entire dataset.
However, this below given original method is problematic because the final mean IoU would vary with the batch-size. On the other hand, the mIoU would not vary with the batch size for the method mentioned in the issue as the separate accumulation would ensure that batch size is irrelevant (though higher batch size can definitely help speed up the evaluation).
Original answer:
Given below is an implementation of mean IoU (Intersection over Union) in PyTorch.
def mIOU(label, pred, num_classes=19):
pred = F.softmax(pred, dim=1)
pred = torch.argmax(pred, dim=1).squeeze(1)
iou_list = list()
present_iou_list = list()
pred = pred.view(-1)
label = label.view(-1)
# Note: Following for loop goes from 0 to (num_classes-1)
# and ignore_index is num_classes, thus ignore_index is
# not considered in computation of IoU.
for sem_class in range(num_classes):
pred_inds = (pred == sem_class)
target_inds = (label == sem_class)
if target_inds.long().sum().item() == 0:
iou_now = float('nan')
else:
intersection_now = (pred_inds[target_inds]).long().sum().item()
union_now = pred_inds.long().sum().item() + target_inds.long().sum().item() - intersection_now
iou_now = float(intersection_now) / float(union_now)
present_iou_list.append(iou_now)
iou_list.append(iou_now)
return np.mean(present_iou_list)
Prediction of your model will be in one-hot form, so first take softmax (if your model doesn't already) followed by argmax to get the index with the highest probability at each pixel. Then, we calculate IoU for each class (and take the mean over it at the end).
We can reshape both the prediction and the label as 1-D vectors (I read that it makes the computation faster). For each class, we first identify the indices of that class using pred_inds = (pred == sem_class) and target_inds = (label == sem_class). The resulting pred_inds and target_inds will have 1 at pixels labelled as that particular class while 0 for any other class.
Then, there is a possibility that the target does not contain that particular class at all. This will make that class's IoU calculation invalid as it is not present in the target. So, you assign such classes a NaN IoU (so you can identify them later) and not involve them in the calculation of the mean.
If the particular class is present in the target, then pred_inds[target_inds] will give a vector of 1s and 0s where indices with 1 are those where prediction and target are equal and zero otherwise. Taking the sum of all elements of this will give us the intersection.
If we add all the elements of pred_inds and target_inds, we'll get the union + intersection of pixels of that particular class. So, we subtract the already calculated intersection to get the union. Then, we can divide the intersection and union to get the IoU of that particular class and add it to a list of valid IoUs.
At the end, you take the mean of the entire list to get the mIoU. If you want the Dice Coefficient, you can calculate it in a similar fashion.
In WinBUGS, I am specifying a model with a multinomial likelihood function, and I need to make sure that the multinomial probabilities are all between 0 and 1 and sum to 1.
Here is the part of the code specifying the likelihood:
e[k,i,1:9] ~ dmulti(P[k,i,1:9],n[i,k])
Here, the array P[] specifies the probabilities for the multinomial distribution.
These probabilities are to be estimated from my data (the matrix e[]) using multiple linear regressions on a series of fixed and random effects. For instance, here is the multiple linear regression used to predict one of the elements of P[]:
P[k,1,2] <- intercept[1,2] + Slope1[1,2]*Covariate1[k] +
Slope2[1,2]*Covariate2[k] + Slope3[1,2]*Covariate3[k]
+ Slope4[1,2]*Covariate4[k] + RandomEffect1[group[k]] +
RandomEffect2[k]
At compiling, the model produces an error:
elements of proportion vector of multinomial e[1,1,1] must be between zero and one
If I understand this correctly, this means that the elements of the vector P[k,i,1:9] (the probability vector in the multinomial likelihood function above) may be very large (or small) numbers. In reality, they all need to be between 0 and 1, and sum to 1.
I am new to WinBUGS, but from reading around it seems that somehow using a beta regression rather than multiple linear regressions might be the way forward. However, although this would allow each element to be between 0 and 1, it doesn't seem to get to the heart of the problem, which is that all the elements of P[k,i,1:9] must be positive and sum to 1.
It may be that the response variable can very simply be transformed to be a proportion. I have tried this by trying to divide each element by the sum of P[k,i,1:9], but so far no success.
Any tips would be very gratefully appreciated!
(I have supplied the problematic sections of the model; the whole thing is fairly long.)
The usual way to do this would be to use the multinomial equivalent of a logit link to constrain the transformed probabilities to the interval (0,1). For example (for a single predictor but it is the same principle for as many predictors as you need):
Response[i, 1:Categories] ~ dmulti(prob[i, 1:Categories], Trials[i])
phi[i,1] <- 1
prob[i,1] <- 1 / sum(phi[i, 1:Categories])
for(c in 2:Categories){
log(phi[i,c]) <- intercept[c] + slope1[c] * Covariate1[i]
prob[i,c] <- phi[i,c] / sum(phi[i, 1:Categories])
}
For identifibility the value of phi[1] is set to 1, but the other values of intercept and slope1 are estimated independently. When the number of Categories is equal to 2, this collapses to the usual logistic regression but coded for a multinomial response:
log(phi[i,2]) <- intercept[2] + slope1[2] * Covariate1[i]
prob[i,2] <- phi[i, 2] / (1 + phi[i, 2])
prob[i,1] <- 1 / (1 + phi[i, 2])
ie:
logit(prob[i,2]) <- intercept[2] + slope1[2] * Covariate1[i]
prob[i,1] <- 1 - prob[i,2]
In this model I have indexed slope1 by the category, meaning that each level of the outcome has an independent relationship with the predictor. If you have an ordinal response and want to assume that the odds ratio associated with the covariate is consistent between successive levels of the response, then you can drop the index on slope1 (and reformulate the code slightly so that phi is cumulative) to get a proportional odds logistic regression (POLR).
Edit
Here is a link to some example code covering logistic regression, multinomial regression and POLR from a course I teach:
http://runjags.sourceforge.net/examples/squirrels.R
Note that it uses JAGS (rather than WinBUGS) but as far as I know there are no differences in model syntax for these types of models. If you want to quickly get started with runjags & JAGS from a WinBUGS background then you could follow this vignette:
http://runjags.sourceforge.net/quickjags.html