Convert quadratic curve to cubic curve - graphics

Looking at Convert a quadratic bezier to a cubic?, I can finally understand why programming teachers always told me that math was so important. Sadly, I didn't listen.
Can anyone provide a more concrete - e.g., computer-language-y - formula for converting a quadratic curve to a cubic? Understanding that there's some rounding errors possible, which is fine.
Given a quad curve represented by variables:
StartX, StartY
ControlX, ControlY
EndX, EndY
And desiring StartX, StartY and EndX, EndY to remain the same, but to now have Control1X, Control1Y and Control2X, Control2Y of a cubic curve.
Is it...
Control1X = StartX + (.66 * (ControlX - StartX))
Control2X = EndX + (.66 * (ControlX - EndX))
With the same essential functions used to calculate Control1Y and Control2Y?

Your code is right except that you should use 2.0/3.0 instead of 0.66.

You avoid most rounding errors by using
Control1 = (Start + 2 * Control) / 3
Control2 = (End + 2 * Control) / 3
Note that line segments are also convertible to cubic Bezier curves using:
Control1 = Start
Control2 = End
This can be handy when converting a complex path mixing various types of curves (linear, quadratic, cubic).
There's also a basic transform for converting elliptic arcs to cubic (with some minor unnoticeable errors): you just have to split at least the arc on elliptic quadrans (cutting the ellipse first on the two orthogonal axis of symetries, or on arbitrary orthogonal axis passing through the center if the ellipse is a circle, then representing each arc; when the ellipse is a circle, the two focal points are confused on the same point, the center of the circle, so you can use any direction for one of the orthogonal axis).
Many SVG renderers do that by adding an additional split on octants (so that you get also precise position not only for points where the two main axis are passing through, but also for two diagonal axis which are bissecting (when the ellipse is a circle) each quadrant (when the ellipse is not a circle, assimilate it as a circle flattened with a linear transform along the small axis only, you do the same computation), because octants are also quite precisely positioned:
cos(pi/4) = sin(pi/4) = sqrt(2)/2 ≈ 0.71, and because this additional splitting will allow precise rendering of tangents on points crossing the diagonals at 45 degrees of the circle.
A full ellipse is then converted to 8 cubic arcs (i.e. 8 points on ellipse and 16 control points): you'll almost not notice the difference between elliptical arcs and these generated cubic arcs
You can create an algorithm that uses the same "flattening error" computed when splitting a Bezier to a list of linear segments, which are then drawn using the classic fast Bresenham algo for line segments; a "flattenning" algorithm just has to measure the relative deviation of the sum of lengths of the two straight segments joining the two focal points of the ellipse to any point of the generated cubic arcs, as this sum is constant on any true ellipse: if you make this measurement on the generated control points for the cubic arcs, the difference should be below a given percentage of the expected sum, or within an absolute distance precision, and can be used to create better approximation of control points with a simple linear formula so that these added points will be on the real ellipse.
Such transform of arbitrary paths is useful when you want to derive other curves from the path, notably the curves of "buffers" at a given distance, notably when these paths must be converted to "strokes" with a defined "stroke width": you need to compute two "inner" and "outer" curves and then concentrate on how to converting the miters/buts/squares/rounded corners, and then to cut long miters at a convenient distance (matching the "miter limit" factor times the "stroke width").
More advanced renderers will also use miters represented by tangent circles when there's a corner between two arcs instead of two segments (this is useful for drawing cute geographic maps)...
Converting an arbitrary path mixing segments, elliptic and bezier arcs to only cubic arcs is a necessary step to compute precise images without excessive defects visible when zooming in. This is then necessary when your "stroke" buffers have to take some effects (such as computing dashes), and then enhancing the result with semi-transparent pixels or subpixels to smooth the rendered strokes (smoothing is easy to computez only when everything has been flattened to line segments, and alsos may be simpler to develop if it only has to manage paths containing only cubic beziers: it can easily be parallelized if needed and accelerated by hardware). Bezier arcs are always interesting because drawing them is fast and requires only basic arithmetics, and the time needed to draw them is proportional to the length of the curve with every point drawn with the same accuracy level.
In summary, all curves are representable by cubic Bezier arcs with a maximum measurable deviation allowed (you can set this maximum deviation to one half pixel, or one subpixel if you first scale up the measurement grid for half-toning or subpixel shading, and then represent accurately every curve with a reasonnaly fast rendering, and get accurate rendering at any zoom level with curves smoothed everywhere, including with half-toning or transparency levels when finally drawing the linear strokes with the classic Bresenham algorithm using fast integer-only arithmetics). These rendered curve will all have the correct tangeants everywhere, without any unexpected angles visible on approximation points, and the remaining control points in the approximation will make also a good smooth rendering of the curvature everywhere (i.e. radius of the tangeant circle), so you can use this approximation as well to derive other measurements such as acceleration, inertial forces, or magnetic effects of paths of charged particles).
If you ever need higher precision, use Bezier arcs with degree 4 (i.e. with 3 control points between points on curve) to get smoothed derivation at a supplementary degree (e.g. gradients of forces), or just split the cubic arcs with additional steps further, until the derivation is smooth enough (but using degree-4 Bezier arcs requires much less points curves and less control points for the same accuracy tolerances, than when using cubic Bezier only).

Related

Geometrical Modeling of a Rope

Assume a Rope of a given length and a given stiffness (that means a minimum bending radius). Both ends are fixed at a given point in a given direction (angle) on a plane e.g. with some clamps. The rope is loose and lays in one ore more loops. It has to lay flat on the plane. No three-dimensional loops are allowed. It can lay in many different configurations depending on how loose the rope is, see image (sorry for my poor drawing).
I'm interested in the area of the plane that can be occupied by the rope (red on the image).
How can I model that in order to calculate that area?
The constraints are:
Length of the rope
minimum bending radius
Coordinates and angles of both ends of the rope
the rope has to lay flat on the plane (no 3D-loops, just 2d)
Hint:
My intuition tells me that the two extreme configurations will be such that the minimum curvature will be achieved at both endpoints on a certain length, and in between a circular arc of a higher radius, i.e. three arcs, with G1 continuity (a G1 discontinuity would be like a null radius).
You can construct them by drawing two circles of the minimum radius, tangent to the directions at the endpoints. Then the third circle will be tangent to these, but with a radius such that the sum of the arcs equals the rope length. The contact points will be symmetrical with respect to the mediatrix of the two endpoints, so that you can compute the unknown radius as a function of a single angle, and solve for the known total length.

Using bezier curves to draw variable width paths

Given two points and a control point, one can easily draw a bezier path between the two points. What I would like to do use a bezier curve to draw a path that with changing width, by a assigning a "weight" to a the points of the curve which will determine its width. For example, if I give weight=0 to the first point of the curve and weight = 1 to the second point of the curve then something like the following path should be generated (the curve in the picture is cubic, but I am working with quadratic bezier curves):
In order to do this I would need to find the control points of the "edge" curves that determine the shape and then fill the shape that is found between the two new curves. However, I am quite unsure on how this can be done. One thing I thought about was to determine the starting and ending points of the new curves by simple drawing perpendicular segments to the line connecting the original control point and the original end points, but this still doesn't solve the problem of finding the new control points for the new curves.
I would use cubics instead of quadratics.
Yes you offset the control points perpendicularly by your weight but not the control points of BEZIER but control points of interpolation cubic (or catmull-rom) and then just convert that into Bezier control points. See related QAs:
How can i produce multi point linear interpolation?
How to create bezier curves for an arc with different start and end tangent slopes
draw outline for some connected lines
However much easier would be to directly render curve using Shaders and (perpendicular) distance. See:
Draw Quadratic Curve on GPU
That way you would not need to offset anything just interpolate the width of your curve ...
Maybe this could help, also there is an example on variable offseting
https://microbians.com/mathcode

Algorithm to calculate and display a ribbon on a 3D triangle mesh

I am looking for an algorithm for the following problem:
Given:
A 3D triangle mesh. The mesh represents a part of the surface of the earth.
A polyline (a connected series of line segments) whose vertices are always on an edge or on a vertex of a triangle of the mesh. The polyline represents the centerline of a road on the surface of the earth.
I need to calculate and display the road i.e. add half of the road's width on each side of the center line, calculate the resulting vertices in the corresponding triangles of the mesh, fill the area of the road and outline the sides of the road.
What is the simplest and/or most effective strategy to do this? How do I store the data of the road most efficiently?
I see 2 options here:
render thick polyline with road texture
While rendering polyline you need TBN matrix so use
polyline tangent as tangent
surface normal as normal
binormal=tangent x normal
shift actual point p position to
p0=p+d*binormal
p1=p-d*binormal
and render textured line (p0,p1). This approach is not precise match to surface mesh so you need to disable depth or use some sort of blending. Also on sharp turns it could miss some parts of a curve (in that case you can render rectangle or disc instead of line.
create the mesh by shifting polyline to sides by half road size
This produces mesh accurate road fit, but due to your limitations the shape of the road can be very distorted without mesh re-triangulation in some cases. I see it like this:
for each segment of road cast 2 lines shifted by half of road size (green,brown)
find their intersection (aqua dots) with shared edge of mesh with the current road control point (red dot)
obtain the average point (magenta dot) from the intersections and use that as road mesh vertex. In case one of the point is outside shared mesh ignore it. In case both intersections are outside shared edge find closest intersection with different edge.
As you can see this can lead to serious road thickness distortions in some cases (big differences between intersection points, or one of the intersection points is outside surface mesh edge).
If you need accurate road thickness then use the intersection of the casted lines as a road control point instead. To make it possible either use blending or disabling Depth while rendering or add this point to mesh of the surface by re-triangulating the surface mesh. Of coarse such action will also affect the road mesh and you need to iterate few times ...
Another way is use of blended texture for road (like sprites) and compute the texture coordinate for the control points. If the road is too thick then thin it by shifting the texture coordinate ... To make this work you need to select the most far intersection point instead of average ... Compute the real half size of the road and from that compute texture coordinate.
If you get rid of the limitation (for road mesh) that road vertex points are at surface mesh segments or vertexes then you can simply use the intersection of shifted lines alone. That will get rid of the thickness artifacts and simplify things a lot.

Choosing step for Bezier curve drawing

Bezier curve is a parametric curve, meaning that there is a paramater t at which one can evaluate the polynomials in order to find out the positions of points laying on the curve.
Polynomials for some common cases can be found at en.wikipedia.org/wiki/B%C3%A9zier_curve#Specific_cases
To draw a Bezier curve on screen, one could evaluate the polynomials from 0 to 1 at ever increasing t by tiny little steps. However, that would very wasteful because, in general, the parameter "space" does not correspond to screen "space", i.e. several little steps may fall onto just one pixel.
My question is: how to find the smallest step which increases Cartesian distance from previous point at least by 1 pixel?
To put it in other way: I would like to draw a Bezier curve on screen. How to choose the (uniform) step by which t should grow so that I never draw at one pixel more the once? I don't mind the "holes" when the t grows too quickly, I just don't want to redraw already drawn pixels.
Edit
By "how to find" I mean O(1). Yes, I could use De Casteljau's algorithm but I was hoping there is a way to "guess" the optimal t step quickly.
The comment above (jozxyqk) gives you a hint. I would give it a try with a recursive binary division of the spline drawing.
Lets say you start with a coarse resolution of the parameter space (delta_t = 0.1), that gives you 11 points on the spline curve s , s(t=0), s(t=0.1), ..., s(t=0.9), s(t=1).
Calculate the distance between s(t_i) and s(t_i+1). If it is >1 than make a binary subdivision between those two points. And so on...
But honestly, I guess it is faster to calculate all points a a higher resolution without any recursive loops or subdivisions. Especially if you are using multithread programming.

Projected points on the 2_sphere

I am doing a project on the TSP on the surface of the sphere. I would like to illustrate the method uniformly distributing points to the surface of the sphere, i.e. filling a cube with uniform (x,y,z) points with the restriction that x^2+y^2+z^2 > 1 and then dividing each radius vector by it's magnitude. I can plot the points along with the sphere but how do I go about specifying a radial vector to each point in gnuplot? Also, how does one specify a line to run through the points in their order? (The chosen path).

Resources