how to change the host type for a 'Canadian cross' compilation of GCC with crosstool-NG - linux

I've installed crosstool-NG and built GCC on a host+build x86 machine that targets arm-unknown-linux-gnueabi. I've then used arm-unknown-linux-gnueabi-gcc to compile a program that ran well on my ARM board.
I'm wanting to now build GCC, targeting ARM to be hosted on ARM. I believe the lingo is
build=i486-pc-linux-gnu
target=arm-unknown-linux-gnueabi-gcc
host=arm-unknown-linux-gnueabi-gcc
How do I do this? do I run ./configure for crosstool-NG passing --host=arm-unknown-linux-gnueabi-gcc?
or do I change the environment variables for CC/etc?

You do this with a .config file. I think samples with a comma in the name are good ones to look at. The main difference is that you must run ct-ng multiple times to create several cross compilers.
ct-ng has under went some changes in Canadian crosses lately. However, you will probably need to re-use your original cross compiler that runs on the PC. The reason is that a compiler will include libraries compiled for the ARM and you need to generate these libraries on your PC. Generally, ensure that the iX86-host+ARM-target compiler is on your path. Then you must set the host tuple or prefix for this tool chain in the toolchain menu. You need set the build tuple to the same compiler.
ct-ng help | grep variables
This gives a directory with a bunch of text files that you can grep for hints.
See 6 - Toolchain types.txt for example. Cross-native or Canadian-cross really doesn't matter, in terms of complexity of building. You need only one intermediate for Cross native, but you need two intermediate compilers for a Canadian cross.
Edit: Ct-ng's How a compiler is constructed has some information on all the happening.

Related

LFS why install glibc twice [duplicate]

I am trying to understand the concept of Linux From Scratch and would like to know why there are multiple passes for building binutils, gcc etc.
Why do we need pass1 and pass2 separately? Why can't we build the tools in pass 1 and then use them to build gcc , glibc, libstdc++ , etc.
The goal is to ensure that your build is consistent, no matter which compiler you're using to compile your compiler (and thus which bugs that compiler has).
Let's say you're building gcc 4.1 with gcc 3.2 (I'm going to call that gcc 3.2 "stage-0"). The folks who did QA for gcc 4.1 didn't test it to work correctly when built with any compiler other than gcc 4.1 -- hence, the need to first build a stage-1 gcc, and then use that stage-1 to compile a stage-2 compiler, to prevent any bugs in the stage-0 compiler from impacting the final result.
Then, the default compile process for gcc uses the stage-2 compiler to build a stage-3 compiler, and compares the two binaries: Any difference between them can be used as proof of presence of a bug.
(Of course, this is only an effective mechanism to avoid unintended bugs; see the classic Ken Thompson paper Reflections on Trusting Trust for a discussion of how intended bugs can survive this kind of measure).
This goes beyond gcc into the entire toolchain because the same principles apply throughout: If you have any differences in the result between building glibc-x.y on a system running glibc-x.y and a system running glibc-x.(y-1) and you don't do an extra pass to ensure that you're building in a match for your target environment, then reproducing those bugs (and testing proposed fixes) is made far more difficult than would otherwise be the case: Nobody who doesn't have your (typically undisclosed) build environment can necessarily recreate the bug!
I know this query is a bit old, but I have something to add to the answers: a clarification of the meaning of 'bootstrap'.
The primary reason for the multi-stage build is to eliminate every vestige of the build host's programs/config/libs from the resultant software. It's not enough to have fresh software compiled. You also have to avoid any and all references to the host's libraries, the host's kernel interfaces (kernel headers), the host's pkg versions, and all other such dependencies on the host system.
Suppose you happened to be a masochist and wanted to build Debian 4 on Fedora 27 (it should be possible). Simply building the software would pull in references to 27's libraries and other things. And your resultant system would not run because those things are not available when the final system is installed.
LFS eases the process somewhat by building simple x86-to-x86 binutils and gcc cross tools in Stage 1, then installing the headers for the kernel to be used in the final system, then glibc. Stage 2 (binutils and gcc) is built using the cross tools, which guarantees that the host's programs/libs/config are not used at all. The rest of the toolchain (I call it Stage 3) is built using the tools from Stage 2. Now the final stage can be built (with a few small adjustments) with the assurance that no part of the build host will be referenced or used, and that no part of the toolchain will be referenced or used. The final stage is built using a path much like PATH=/bin:/usr/bin:/tools/bin; thus as the final tools are built, they will be used instead of those in the toolchain.
Building a toolchain is not for the impatient. It took me months to update Smoothwall Express' build system and the pkgs used, because building a toolchain is fraught with peril. I battled many dragons, balrocs, and dwarfs. I referenced LFS often to figure out how they did it. The result is an automated re-entrant build system that builds the entire distro with no references to the host system. I primarily build it on Debian 8, but it's been known to build on Gentoo, and it supposed to be able to build on itself.

Handling autoconf with Android after NDK16

I'm trying to update an existing configuration we have we are cross compiling for a number of targets - the question specifically here is about Android. More specifically we are building code using cmake and the hunter package manager. However we are building ICU using a link that uses autoconf/configure, called from cmake. Not sure that is specifically important except that we have less control on the use of configure than is generally the case.
OK: we have a version that builds against an old NDK but I am updating and have hit a problem identified by https://android.googlesource.com/platform/ndk/+/master/docs/UnifiedHeaders.md: with NDK16 and later, the value of the sysroot parameter needs to vary between compilation and linkage. As it stands the configure script tries to build a small program conftest.c - the program fails to link. Manually I can compile the code in two stages using -c and then linking the subsequent .o, but that is not what configure is trying to do.
Now the reality is that when I build this code, I don't actually need to link the code - I am generating a library which is used elsewhere. However that is not currently the way that configure sees it.
I may look to redo the configuration script to just check that the code can be compiled when cross compiling. However I am curious to know if anybody has managed to handle this sort of thing by keeping the existing config files and just changing the parameters by which the scripts are called.
When r19 releases to stable this problem will go away on its own (https://github.com/android-ndk/ndk/issues/780), but since that's still in beta it's not a good solution just yet.
Prior to r19 (this isn't really unique to r16+, this has always been the case and it was just asymptomatic previously), autoconf builds should be done using a standalone toolchain.
You however should not use a standalone toolchain for CMake, so odds are something about your configuration will need to change until r19 is released. Depending on the effort involved, it may make sense to keep to r15 until r19 is available.

why multiple passes for building Linux From Scratch (LFS)?

I am trying to understand the concept of Linux From Scratch and would like to know why there are multiple passes for building binutils, gcc etc.
Why do we need pass1 and pass2 separately? Why can't we build the tools in pass 1 and then use them to build gcc , glibc, libstdc++ , etc.
The goal is to ensure that your build is consistent, no matter which compiler you're using to compile your compiler (and thus which bugs that compiler has).
Let's say you're building gcc 4.1 with gcc 3.2 (I'm going to call that gcc 3.2 "stage-0"). The folks who did QA for gcc 4.1 didn't test it to work correctly when built with any compiler other than gcc 4.1 -- hence, the need to first build a stage-1 gcc, and then use that stage-1 to compile a stage-2 compiler, to prevent any bugs in the stage-0 compiler from impacting the final result.
Then, the default compile process for gcc uses the stage-2 compiler to build a stage-3 compiler, and compares the two binaries: Any difference between them can be used as proof of presence of a bug.
(Of course, this is only an effective mechanism to avoid unintended bugs; see the classic Ken Thompson paper Reflections on Trusting Trust for a discussion of how intended bugs can survive this kind of measure).
This goes beyond gcc into the entire toolchain because the same principles apply throughout: If you have any differences in the result between building glibc-x.y on a system running glibc-x.y and a system running glibc-x.(y-1) and you don't do an extra pass to ensure that you're building in a match for your target environment, then reproducing those bugs (and testing proposed fixes) is made far more difficult than would otherwise be the case: Nobody who doesn't have your (typically undisclosed) build environment can necessarily recreate the bug!
I know this query is a bit old, but I have something to add to the answers: a clarification of the meaning of 'bootstrap'.
The primary reason for the multi-stage build is to eliminate every vestige of the build host's programs/config/libs from the resultant software. It's not enough to have fresh software compiled. You also have to avoid any and all references to the host's libraries, the host's kernel interfaces (kernel headers), the host's pkg versions, and all other such dependencies on the host system.
Suppose you happened to be a masochist and wanted to build Debian 4 on Fedora 27 (it should be possible). Simply building the software would pull in references to 27's libraries and other things. And your resultant system would not run because those things are not available when the final system is installed.
LFS eases the process somewhat by building simple x86-to-x86 binutils and gcc cross tools in Stage 1, then installing the headers for the kernel to be used in the final system, then glibc. Stage 2 (binutils and gcc) is built using the cross tools, which guarantees that the host's programs/libs/config are not used at all. The rest of the toolchain (I call it Stage 3) is built using the tools from Stage 2. Now the final stage can be built (with a few small adjustments) with the assurance that no part of the build host will be referenced or used, and that no part of the toolchain will be referenced or used. The final stage is built using a path much like PATH=/bin:/usr/bin:/tools/bin; thus as the final tools are built, they will be used instead of those in the toolchain.
Building a toolchain is not for the impatient. It took me months to update Smoothwall Express' build system and the pkgs used, because building a toolchain is fraught with peril. I battled many dragons, balrocs, and dwarfs. I referenced LFS often to figure out how they did it. The result is an automated re-entrant build system that builds the entire distro with no references to the host system. I primarily build it on Debian 8, but it's been known to build on Gentoo, and it supposed to be able to build on itself.

When cross compiling a compiler makes sense?

I just had one of the "wait what, mmm ... " moments.
Assuming that you want to produce the compiler A for the targeted architecture a usually the outcome of the configuration phase depends on the value that you use for --target=, meaning that your tools need to be able to produce and deal with compiled objects for a.
Now, usually under a common GNU/Linux distribution with gcc as the main compiler the first thing that you want is to get the binutils and build them for your target, but you don't have a compiler that is compatible with your given target because that's what you are trying to do in the first place, creating a toolchain for a, so here starts the conundrum: how to break this loop ?
Now assuming that my previous example was taking into account and running on a machine with an architecture b, clearly different from a because we are always talking about the cross compilation case, you get lucky and the hardware manufacturer releases gcc for a on machines with the a architecture, you still have to solve the riddle on how to build a on b and break the previous loop. In other words even if you get support for your compiler on the original architecture this doesn't play any role when you want to cross compile.
So what's the logic behind this and how to break the loop ?
The "gcc" compiler is also "self-hosting". So, you usually build a "stage1" compiler on the non-target platform and then move to the target system and re-build the compiler with the "stage1" (running through "stage3").
You first need to understand the "Target Triplets" (you listed one "--target"), but you also have "--host" and "--build". From the link,
--build=build-type
the type of system on which the package is being configured and compiled. It defaults to the result of running config.guess.
--host=host-type
the type of system on which the package runs. By default it is the same as the build machine. Specifying it enables the cross-compilation mode.
--target=target-type
the type of system for which any compiler tools in the package produce code (rarely needed). By default, it is the same as host.
See also, Cross Linux From Scratch and the astonishing work at NetBSD.

Can autotools create multi-platform makefiles

I have a plugin project I've been developing for a few years where the plugin works with numerous combinations of [primary application version, 3rd party library version, 32-bit vs. 64-bit]. Is there a (clean) way to use autotools to create a single makefile that builds all versions of the plugin.
As far as I can tell from skimming through the autotools documentation, the closest approximation to what I'd like is to have N independent copies of the project, each with its own makefile. This seems a little suboptimal for testing and development as (a) I'd need to continually propagate code changes across all the different copies and (b) there is a lot of wasted space in duplicating the project so many times. Is there a better way?
EDIT:
I've been rolling my own solution for a while where I have a fancy makefile and some perl scripts to hunt down various 3rd party library versions, etc. As such, I'm open to other non-autotools solutions. For other build tools, I'd want them to be very easy for end users to install. The tools also need to be smart enough to hunt down various 3rd party libraries and headers without a huge amount of trouble. I'm mostly looking for a linux solution, but one that also works for Windows and/or the Mac would be a bonus.
If your question is:
Can I use the autotools on some machine A to create a single universal makefile that will work on all other machines?
then the answer is "No". The autotools do not even make a pretense at trying to do that. They are designed to contain portable code that will determine how to create a workable makefile on the target machine.
If your question is:
Can I use the autotools to configure software that needs to run on different machines, with different versions of the primary software which my plugin works with, plus various 3rd party libraries, not to mention 32-bit vs 64-bit issues?
then the answer is "Yes". The autotools are designed to be able to do that. Further, they work on Unix, Linux, MacOS X, BSD.
I have a program, SQLCMD (which pre-dates the Microsoft program of the same name by a decade and more), which works with the IBM Informix databases. It detects the version of the client software (called IBM Informix ESQL/C, part of the IBM Informix ClientSDK or CSDK) is installed, and whether it is 32-bit or 64-bit. It also detects which version of the software is installed, and adapts its functionality to what is available in the supporting product. It supports versions that have been released over a period of about 17 years. It is autoconfigured -- I had to write some autoconf macros for the Informix functionality, and for a couple of other gizmos (high resolution timing, presence of /dev/stdin etc). But it is doable.
On the other hand, I don't try and release a single makefile that fits all customer machines and environments; there are just too many possibilities for that to be sensible. But autotools takes care of the details for me (and my users). All they do is:
./configure
That's easier than working out how to edit the makefile. (Oh, for the first 10 years, the program was configured by hand. It was hard for people to do, even though I had pretty good defaults set up. That was why I moved to auto-configuration: it makes it much easier for people to install.)
Mr Fooz commented:
I want something in between. Customers will use multiple versions and bitnesses of the same base application on the same machine in my case. I'm not worried about cross-compilation such as building Windows binaries on Linux.
Do you need a separate build of your plugin for the 32-bit and 64-bit versions? (I'd assume yes - but you could surprise me.) So you need to provide a mechanism for the user to say
./configure --use-tppkg=/opt/tp/pkg32-1.0.3
(where tppkg is a code for your third-party package, and the location is specifiable by the user.) However, keep in mind usability: the fewer such options the user has to provide, the better; against that, do not hard code things that should be optional, such as install locations. By all means look in default locations - that's good. And default to the bittiness of the stuff you find. Maybe if you find both 32-bit and 64-bit versions, then you should build both -- that would require careful construction, though. You can always echo "Checking for TP-Package ..." and indicate what you found and where you found it. Then the installer can change the options. Make sure you document in './configure --help' what the options are; this is standard autotools practice.
Do not do anything interactive though; the configure script should run, reporting what it does. The Perl Configure script (note the capital letter - it is a wholly separate automatic configuration system) is one of the few intensively interactive configuration systems left (and that is probably mainly because of its heritage; if starting anew, it would most likely be non-interactive). Such systems are more of a nuisance to configure than the non-interactive ones.
Cross-compilation is tough. I've never needed to do it, thank goodness.
Mr Fooz also commented:
Thanks for the extra comments. I'm looking for something like:
./configure --use-tppkg=/opt/tp/pkg32-1.0.3 --use-tppkg=/opt/tp/pkg64-1.1.2
where it would create both the 32-bit and 64-bit targets in one makefile for the current platform.
Well, I'm sure it could be done; I'm not so sure that it is worth doing by comparison with two separate configuration runs with a complete rebuild in between. You'd probably want to use:
./configure --use-tppkg32=/opt/tp/pkg32-1.0.3 --use-tppkg64=/opt/tp/pkg64-1.1.2
This indicates the two separate directories. You'd have to decide how you're going to do the build, but presumably you'd have two sub-directories, such as 'obj-32' and 'obj-64' for storing the separate sets of object files. You'd also arrange your makefile along the lines of:
FLAGS_32 = ...32-bit compiler options...
FLAGS_64 = ...64-bit compiler options...
TPPKG32DIR = #TPPKG32DIR#
TPPKG64DIR = #TPPKG64DIR#
OBJ32DIR = obj-32
OBJ64DIR = obj-64
BUILD_32 = #BUILD_32#
BUILD_64 = #BUILD_64#
TPPKGDIR =
OBJDIR =
FLAGS =
all: ${BUILD_32} ${BUILD_64}
build_32:
${MAKE} TPPKGDIR=${TPPKG32DIR} OBJDIR=${OBJ32DIR} FLAGS=${FLAGS_32} build
build_64:
${MAKE} TPPKGDIR=${TPPKG64DIR} OBJDIR=${OBJ64DIR} FLAGS=${FLAGS_64} build
build: ${OBJDIR}/plugin.so
This assumes that the plugin would be a shared object. The idea here is that the autotool would detect the 32-bit or 64-bit installs for the Third Party Package, and then make substitutions. The BUILD_32 macro would be set to build_32 if the 32-bit package was required and left empty otherwise; the BUILD_64 macro would be handled similarly.
When the user runs 'make all', it will build the build_32 target first and the build_64 target next. To build the build_32 target, it will re-run make and configure the flags for a 32-bit build. Similarly, to build the build_64 target, it will re-run make and configure the flags for a 64-bit build. It is important that all the flags affected by 32-bit vs 64-bit builds are set on the recursive invocation of make, and that the rules for building objects and libraries are written carefully - for example, the rule for compiling source to object must be careful to place the object file in the correct object directory - using GCC, for example, you would specify (in a .c.o rule):
${CC} ${CFLAGS} -o ${OBJDIR}/$*.o -c $*.c
The macro CFLAGS would include the ${FLAGS} value which deals with the bits (for example, FLAGS_32 = -m32 and FLAGS_64 = -m64, and so when building the 32-bit version,FLAGS = -m32would be included in theCFLAGS` macro.
The residual issues in the autotools is working out how to determine the 32-bit and 64-bit flags. If the worst comes to the worst, you'll have to write macros for that yourself. However, I'd expect (without having researched it) that you can do it using standard facilities from the autotools suite.
Unless you create yourself a carefully (even ruthlessly) symmetric makefile, it won't work reliably.
As far as I know, you can't do that. However, are you stuck with autotools? Are neither CMake nor SCons an option?
We tried it and it doesn't work! So we use now SCons.
Some articles to this topic: 1 and 2
Edit:
Some small example why I love SCons:
env.ParseConfig('pkg-config --cflags --libs glib-2.0')
With this line of code you add GLib to the compile environment (env). And don't forget the User Guide which just great to learn SCons (you really don't have to know Python!). For the end user you could try SCons with PyInstaller or something like that.
And in comparison to make, you use Python, so a complete programming language! With this in mind you can do just everything (more or less).
Have you ever considered to use a single project with multiple build directories?
if your automake project is implemented in a proper way (i.e.: NOT like gcc)
the following is possible:
mkdir build1 build2 build3
cd build1
../configure $(YOUR_OPTIONS)
cd build2
../configure $(YOUR_OPTIONS2)
[...]
you are able to pass different configuration parameters like include directories and compilers (cross compilers i.e.).
you can then even run this in a single make call by running
make -C build1 -C build2 -C build3

Resources