I am deleting segments after they gets indexed then how nutch will get that last fetch time of pages while recrawling? Do i need to store them to speedup the recrawl?
The last fetch time is maintained by crawldb and not segments. Segments are useful just from indexing & searching perspective. Storing in any from will NOT impact crawling rate.
Related
Is there a way to use StormCrawler to index files on the file system rather than URLs? We have 5+ million files that need to be crawled and indexed (with ElasticSearch). The index needs to be updated daily or more frequently. Other crawlers take 50+ hours to crawl the full file set. This makes update cycles too slow. For example, if you need to update the search index daily or more frequently it is not possible with other crawlers.
There is a File protocol available in StormCrawler. If you represent the files as URIs using file://, SC should be able to handle them out of the box.
I'm very new to apache Nutch. My goal is to start from a list of seed URLs and extract as much URLs (and sub URLs) as I can within a size limit (say no more than 1 million or less than 1 TB of data) using Nutch. I do not need the content of the pages, I only need to save the URLs. Is there any way to do this? Is Nutch the right tool?
Yes, you could use Nutch for this purpose, essentially Nutch does all of what you want.
You need to parse the fetched HTML in either way (in order to discover new links, and of course repeat the process). One way to go would be to dump the LinkDB that Nutch keeps into a file using the linkdb command. Our you could use the indexer-links plugin that is available for Nutch 1.x to index your inlinks/outlinks into Solr/ES.
In Nutch you control how many URLs you want to process per round, but this is hardly related to the amount of fetched data. So you'll need to decide when to stop.
I have created a search project that based on lucene 4.5.1
There are about 1 million documents and each of them is about few kb, and I index them with fields: docname(stored), lastmodified,content. The overall size of index folder is about 1.7GB
I used one document (the original one) as a sample, and query the content of that document against index. the problems now is each query result is coming up slow. After some tests, I found that my queries are too large although I removed stopwords, but I have no idea how to reduce query string size. plus, the smaller size the query string is, the less accurate the result comes.
This is not limited to specific file, because I also tested with other original files, the performance of search is relatively slow (often 1-8 seconds)
Also, I have tried to copy entire index directory to RAMDirectory while search, that didn't help.
In addition, I have one index searcher only across multiple threads, but in testing, I only used one thread as benchmark, the expected response time should be a few ms
So, how can improve search performance in this case?
Hint: I'm searching top 1000
If the number of fields is large a nice solution is to not store them then serialize the whole object to a binary field.
The plus is, when projecting the object back out after query, it's a single field rather than many. getField(name) iterates over the entire set so O(n/2) then getting the values and setting fields. Just one field and deserialize.
Second might be worth at something like a MoreLikeThis query. See https://stackoverflow.com/a/7657757/277700
I recently encountered a situation where my CouchDB instance used all available disk space on a 20GB VM instance.
Upon investigation I discovered that a directory in /usr/local/var/lib/couchdb/ contained a bunch of .view files, the largest of which was 16GB. I was able to remove the *.view files to restore normal operation. I'm not sure why the .view files grew so large and how CouchDB manages .view files.
A bit more information. I have a VM running Ubuntu 9.10 (karmic) with 512MB and CouchDB 0.10. The VM has a cron job which invokes a Python script which queries a view. The cron job runs once every five minutes. Every time the view is queried the size of a .view file increases. I've written a job to monitor this on an hourly basis and after a few days I don't see the file rolling over or otherwise decreasing in size.
Does anyone have any insights into this issue? Is there a piece of documentation I've missed? I haven't been able to find anything on the subject but that may be due to looking in the wrong places or my search terms.
CouchDB is very disk hungry, trading disk space for performance. Views will increase in size as items are added to them. You can recover disk space that is no longer needed with cleanup and compaction.
Every time you create update or delete a document then the view indexes will be updated with the relevant changes to the documents. The update to the view will happen when it is queried. So if you are making lots of document changes then you should expect your index to grow and will need to be managed with compaction and cleanup.
If your views are very large for a given set of documents then you may have poorly designed views. Alternatively your design may just require large views and you will need to manage that as you would any other resource.
It would be easier to tell what is happening if you could describe what document updates (inc create and delete) are happening and what your view functions are emitting, especially for the large view.
That your .view files grow, each time you access a view is because CouchDB updates views on access. CouchDB views need compaction like databases too. If you have frequent changes to your documents, resulting in changes in your view, you should run view compaction from time to time. See http://wiki.apache.org/couchdb/HTTP_view_API#View_Compaction
To reduce the size of your views, have a look at the data, you are emitting. When you emit(foo, doc) the entire document is copied to the view to it is very instantly available when you query the view. the function(doc) { emit(doc.title, doc); } will result in a view as big as the database itself. You could also emit(doc.title, nil); and use the include_docs option to let CouchDB fetch the document from the database when you access the view (which will result in a slightly performance penalty). See http://wiki.apache.org/couchdb/HTTP_view_API#Querying_Options
Use sequential or monotonic id's for documents instead of random
Yes, couchdb is very disk hungry, and it needs regular compactions. But there is another thing that can help reducing this disk usage, specially sometimes when it's unnecessary.
Couchdb uses B+ trees for storing data/documents which is very good data structure for performance of data retrieval. However use of B-tree trades in performance for disk space usage. With completely random Id, B+-tree fans out quickly. As the minimum fill rate is 1/2 for every internal node, the nodes are mostly filled up to the 1/2 (as the data spreads evenly due to its randomness) generating more internal nodes. Also new insertions can cause a rewrite of full tree. That's what randomness can cause ;)
Instead, use of sequential or monotonic ids can avoid all.
I've had this problem too, trying out CouchDB for a browsed-based game.
We had about 100.000 unexpected visitors on the first day of a site launch, and within 2 days the CouchDB database was taking about 40GB in space. This made the server crash because the HD was completely full.
Compaction brought that back to about 50MB. I also set the _revs_limit (which defaults to 1000) to 10 since we didn't care about revision history, and it's running perfectly since. After almost 1M users, the database size is usually about 2-3GB. When i run compaction it's about 500MB.
Setting document revision limit to 10:
curl -X PUT -d "10" http://dbuser:dbpassword#127.0.0.1:5984/yourdb/_revs_limit
Or without user:password (not recommended):
curl -X PUT -d "10" http://127.0.0.1:5984/yourdb/_revs_limit
I have a news site with 150,000 news articles. About 250 new articles are added daily to the database at an interval of 5-15 minutes. I understand that Solr is optimized for millions of records and my 150K won't be a problem for it. But I am worried the frequent updation will be a problem, since the cache gets invalidated with every update. In my dev server, cold load of a page takes 5-7 seconds to load (since every page runs a few MLT queries).
Will it help, if I split my index into two - An archive index and a latest index. The archive index will be updated once every day.
Can anyone suggest any ways to optimize my installation for a constantly updating index?
Thanks
My answer is: test it! Don't try to optimize yet if you don't know how it performs. Like you said, 150K is not a lot, it should be quick to build an index of that size for your tests. After that, run a couple of MLT queries from a different concurrent threads (to simulate users) while you index more documents to see how it behaves.
One setting that you should keep an eye on is auto-commit. Since you are indexing constantly, you can't commit at each document (you will bring Solr down). The value that you will choose for this setting will let you tune the latency of the system (how many times it takes for new documents to be returned in results) while keeping the system responsive.
Consider using mlt=true in the main query instead of issuing per-result MoreLikeThis queries. You'll save the roundtrips and so it will be faster.