I'm trying to use operations like square on a list of Int and afterwards give the initial value and the result out in a string. For example:
IntListToString square [5,6,7] should result in something like 5=25 6=36 =7=49
My guess is the declaration has to look like this
IntListToString :: (Int -> Int) -> [Int] -> String
Im struggling with the function itself. Do I have to use the map-function and afterwards convert into the right format?
What would your suggestions on solving this be?
Yes, try
showBeforeAfter before after = show before ++ "=" ++ show after
transformBeforeAfter f x = showBeforeAfter x (f x)
mapBeforeAfter f = map (transformBeforeAfter f)
beforeAfter f xs = unwords (mapBeforeAfter f xs)
where beforeAfter is an implementation of your IntListToString. Please note that function names must start with a symbol (excluding a colon) or a lowercase letter.
I'm following the NLPWP Computational Linguistics site and trying to create a Haskell procedure to find collocations (most common groupings of two words, like "United States" or "to find") in a list of words. I've got the following working code to find bigram frequency:
import Data.Map (Map)
import qualified Data.Map as Map
-- | Function for creating a list of bigrams
-- | e.g. [("Colorless", "green"), ("green", "ideas")]
bigram :: [a] -> [[a]]
bigram [] = []
bigram [_] = []
bigram xs = take 2 xs : bigram (tail xs)
-- | Helper for freqList and freqBigram
countElem base alow = case (Map.lookup alow base) of
Just v -> Map.insert alow (v + 1) base
Nothing -> Map.insert alow 1 base
-- | Maps each word to its frequency.
freqList alow = foldl countElem Map.empty alow
-- | Maps each bigram to its frequency.
freqBigram alow = foldl countElem Map.empty (bigram alow)
I'm trying to write a function that outputs a Map from each bigram to [freq of bigram]/[(freq word 1)*(freq word 2)]. Could you possibly provide advice on how to approach it?
None of the following code is working, but it gives a vague outline for what I was trying to do.
collocations alow =
| let f key = (Map.lookup key freqBi) / ((Map.lookup (first alow) freqs)*(Map.lookup (last alow) freqs))
in Map.mapWithKey f = freqBi
where freqs = (freqList alow)
where freqBi = (freqBigram alow)
I'm very new to Haskell, so let me know if you've got any idea how to fix the collocations procedure. Style tips are also welcome.
Most of your code looks sane, except for the final colloctions function.
I'm not sure why there's a stray pipe in there after the equals sign. You're not trying to write any kind of pattern guard, so I don't think that should be there.
Map.lookup returns a Maybe key, so trying to do division or multiplication isn't going to work. Maybe what you want is some kind of function that takes a key and a map, and returns the associated count or zero if the key doesn't exist?
Other than that, it looks like you're not too far off having this work.
As I read it, your confusion stems from mistaking types, more or less. General advice: Use type signatures on all your top level functions and make sure they are sensible and what you expect of the function (I often do this even before implementing the function).
Let's take a look at your
-- | Function for creating a list of bigrams
-- | e.g. [("Colorless", "green"), ("green", "ideas")]
bigram :: [a] -> [[a]]
If you're giving in a list of Strings, you'll be getting a list of lists of Strings, so your bigram is a list.
You could decide to be more explicit (only allow Strings instead of sometype a - for the beginning at least). So, actually we get a list of Words an make a list of Bigrams from it:
type Word = String
type Bigram = (Word, Word)
bigram :: [Word] -> [Bigram]
For the implementation you can try to use readily available functions from Data.List, for example zipWith and tail.
Now your freqList and freqBigram look like
freqList :: [Word] -> Map Word Int
freqBigram :: [Word] -> Map Bigram Int
With this error messages of the compiler will be clearer to you. To point at it: Take care what you're doing in the lookups for the word frequencies. You're searching for the frequency of word1 and word2, and the bigram is (word1,word2).
Now you should be able to figure the solution out on your own, I guess.
First of all I advise you to have a look at the function
insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
maybe you'll recognize the pattern if used
f freqs bg = insertWith (+) bg 1 freqs
Next as #MathematicalOrchid already pointed out your solution is not too far from being correct.
lookup :: Ord k => k -> Map k a -> Maybe a
You already took care of that in your countElems function.
what I'd like to note that there is this neat abstraction called Applicative, which works really well for problems like yours.
First of all you have to import Control.Applicative if you're using GHC prior to 7.10 for newer versions it is already at your fingertips.
So what does this abstraction provide, similar to Functor it gives you a way to handle "side effects" in your case the possibility of the failing lookup resulting in Nothing.
We have two operators provided by Applicative: pure and <*>, and in addition as every Applicative is required to be a Functor we also get fmap or <$> which are the latter is just an infix alias for convenience.
So how does this apply to your situation?
<*> :: Applicative f => f (a -> b) -> f a -> f b
<$> :: Functor f => a -> b -> f a -> f b
First of all you see that those two look darn similar but with <*> being slightly less familiar.
Now having a function
f :: Int -> Int
f x = x + 3
and
x1 :: Maybe Int
x1 = Just 4
x2 :: Maybe Int
x2 = Nothing
one couldn't simply just f y because that wouldn't typecheck - but and that is the first idea to keep in mind. Maybe is a Functor (it is also an Applicative - it is even more an M-thing, but let's not go there).
f <$> x1 = Just 7
f <$> x2 = Nothing
so you can imagine the f looking up the value and performing the calculation inside the Just and if there is no value - a.k.a. we have the Nothing situation, we'll do what every lazy student does - be lazy and do nothing ;-).
Now we get to the next part <*>
g1 :: Maybe (Int -> Int)
g1 = Just (x + 3)
g2 :: Maybe (Int -> Int)
g2 = Nothing
Still g1 x1 wouldn't work, but
g1 <*> x1 = Just 7
g1 <*> x2 = Nothing
g2 <*> x1 = Nothing -- remember g2 is Nothing
g2 <*> x2 = Nothing
NEAT! - but still how does this solve your problem?
The 'magic' is using both operators ... for multi-argument functions
h :: Int -> Int -> Int
h x y = x + y + 2
and partial function application, which just means put in one value get back a function that waits for the next value.
GHCi> :type h 1
h 1 :: Int -> Int
Now the strange thing happens we can use with a function like h.
GHCi> :type h1 <$> x1
h1 <$> x1 :: Maybe (Int -> Int)
well that's good because then we can use our <*> with it
y1 :: Maybe Int
y1 = Just 7
h1 <$> x1 <*> y1 = Just (4 + 7 + 2)
= Just 13
and this even works with an arbitrary number of arguments
k :: Int -> Int -> Int -> Int -> Int
k x y z w = ...
k <$> x1 <*> y1 <*> z1 <*> w1 = ...
So design a pure function that works with Int, Float, Double or whatever you like and then use the Functor/Applicative abstraction to make your lookup and frequency calculation work with each other.
I'm fairly new to Haskell and don't understand the following divide and conquer construct:
{- trivial solve split combine input/output-}
dc :: (a -> Bool) -> (a -> b) -> (a -> [a]) -> ([b] -> b) -> a -> b
dc trivial solve split combine = x
where
x y = if trivial y then solve y
else (\_ z -> combine z) y (map x (split y))
Now I need to implement a merge-sort function based on this construct. I tried to implement some functions but I'm pretty sure that's not how it should work:
trivial :: (Ord a, Num a) => [a] -> Bool
trivial [] = True
trivial (x:[]) = True
trivial (x:x':xs) = if x<=x' then trivial (x':xs) else False
split :: [a] -> [[a]]
split (x:[]) = [[x]]
split (x:xs) = [x] : split xs
combine :: [[a]] -> [a]
combine [[]] = []
combine ([]:ys) = combine ys
combine ((x:xs):ys) = x : combine (xs:ys)
So how does the construct above work ? What does "x" and "y" stand for ? What should "trivial" and "solve" (and split/combine) do ?
So, the signature of dc can be read as "this function takes 4 arguments and returns a function from a to b". In the definition, this function is called x. x is defined in the where clause, as:
x y = if trivial y then solve y
else (\_ z -> combine z) y (map x (split y))
You could add a type signature for x:
x :: a -> b
The definition of x (which is the function that performs your actual divide and conquer computation) is somewhat obfuscated, but can be read as:
If x is a trivial case, just solve it
Otherwise, split it, divide-and-conquer it (with x), then combine the result.
Note: It could be written a bit more clearly as:
x y = if trivial y then solve y
else (combine . map x . split) y
This function does all the recursivity you need, so your functions don't need to care about that. Your functions should be:
trivial: True if the problem can be solved with solve in this case. For the merge sort, the trivial case is the list that contains only one item.
solve: solves the trivial case. For the merge sort, it's just the identity (since it's just a one item list).
split: split the big problem into smaller problems (which will be done many times, until they are trivial. For the merge sort, it's just about splitting the list in half.
combine: takes a list of stuff that were previously splitted, and combine them. For the merge sort, that's where the merging magic happens :)
Note: the merge sort algorithm can be a bit different from what I mentioned. For example, a sorted list can also be a trivial case.
I have the following list (it’s a length 2 list, but in my assignment I have a length +n list)
xxs = [(11,22,[(33,33,33),(44,44,44)]),(55,66,[(77,77,77),(88,88,88)])]
I’m trying to “replace” one 3-tuple (p1 or p2 or p3 or p4 from the image bellow) by list index (n) and by sub-list index (p).
The function, at the end, should be like:
fooo newtuple n p = (…)
For example: (replace p3 for (98,98,98):
fooo (98,98,98) 2 1
[(11, 22, [(33,33,33) , (44,44,44)]) , (55, 66, [(98,98,98),(88,88,88)])]
I planned the code like following this steps:
Access the pn that I want to change. I manage to achieve it by:
fob n p = ((aux2 xxs)!!n)!!p
where aux2 [] = []
aux2 ((_,_,c):xs) = c:aux2 xs
“replace” the 3-tuple. I really need some help here. I’m stuck. the best code (in my head it makes some sense) that I’ve done: (remember: please don’t be too bad on my code, I’ve only been studying Haskell only for 5 weeks)
foo n p newtuple = fooAux newtuple fob
where fooAux _ [] = []
fooAux m ((_):ds) = m:ds
fob n p = ((aux2 xxs)!!n)!!p
where aux2 [] = []
aux2 ((_,_,c):xs) = c:aux2 xs
Finally I will put all back together, using splitAt.
Is my approach to the problem correct? I really would appreciate some help on step 2.
I'm a bit new to Haskell too, but lets see if we can't come up with a decent way of doing this.
So, fundamentally what we're trying to do is modify something in a list. Using functional programming I'd like to keep it a bit general, so lets make a function update.
update :: Int -> (a -> a) -> [a] -> [a]
update n f xs = pre ++ (f val) : post
where (pre, val:post) = splitAt n xs
That will now take an index, a function and a list and replace the nth element in the list with the result of the function being applied to it.
In our bigger problem, however, we need to update in a nested context. Luckily our update function takes a function as an argument, so we can call update within that one, too!
type Triple a = (a,a,a)
type Item = (Int, Int, [Triple Int])
fooo :: Triple Int -> Int -> Int -> [Item] -> [Item]
fooo new n p = update (n-1) upFn
where upFn (x,y,ps) = (x,y, update (p-1) objFn ps)
objFn _ = new
All fooo has to do is call update twice (once within the other call) and do a little "housekeeping" work (putting the result in the tuple correctly). The (n-1) and (p-1) were because you seem to be indexing starting at 1, whereas Haskell starts at 0.
Lets just see if that works with our test case:
*Main> fooo (98,98,98) 2 1 [(11,22,[(33,33,33),(44,44,44)]),(55,66,[(77,77,77),(88,88,88)])]
[(11,22,[(33,33,33),(44,44,44)]),(55,66,[(98,98,98),(88,88,88)])]
First, we need a general function to map a certain element of a list, e.g.:
mapN :: (a -> a) -> Int -> [a] -> [a]
mapN f index list = zipWith replace list [1..] where
replace x i | i == index = f x
| otherwise = x
We can use this function twice, for the outer list and the inner lists. There is a little complication as the inner list is part of a tuple, so we need another helper function:
mapTuple3 :: (c -> c) -> (a,b,c) -> (a,b,c)
mapTuple3 f (x,y,z) = (x,y,f z)
Now we have everything we need to apply the replace function to our use case:
fooo :: Int -> Int -> (Int,Int,Int) -> [(Int,Int,[(Int,Int,Int)])]
fooo n p newTuple = mapN (mapTuple3 (mapN (const newTuple) p)) n xxs
Of course in the inner list, we don't need to consider the old value, so we can use const :: a -> (b -> a) to ignore that argument.
So you've tried using some ready-made function, (!!). It could access an item in a list for you, but forgot its place there, so couldn't update. You've got a solution offered, using another ready-made function split, that tears a list into two pieces, and (++) which glues them back into one.
But to get a real feel for it, what I suspect your assignment was aiming at in the first place (it's easy to forget a function name, and it's equally easy to write yourself a new one instead), you could try to write the first one, (!!), yourself. Then you'd see it's real easy to modify it so it's able to update the list too.
To write your function, best think of it as an equivalence equation:
myAt 1 (x:xs) = x
myAt n (x:xs) | n > 1 = ...
when n is zero, we just take away the head element. What do we do when it's not? We try to get nearer towards the zero. You can fill in the blanks.
So here we returned the element found. What if we wanted to replace it? Replace it with what? - this calls another parameter into existence,
myRepl 1 (x:xs) y = (y:xs)
myRepl n (x:xs) y | n > 1 = x : myRepl ...
Now you can complete the rest, I think.
Lastly, Haskell is a lazy language. That means it only calls into existence the elements of a list that are needed, eventually. What if you replace the 7-th element, but only first 3 are later asked for? The code using split will actually demand the 7 elements, so it can return the first 3 when later asked for them.
Now in your case you want to replace in a nested fashion, and the value to replace the old one with is dependent on the old value: newVal = let (a,b,ls)=oldVal in (a,b,myRepl p ls newtuple). So indeed you need to re-write using functions instead of values (so that where y was used before, const y would go):
myUpd 1 (x:xs) f = (f x:xs)
myUpd n ... = ...
and your whole call becomes myUpd n xxs (\(a,b,c)->(a,b,myUpd ... (const ...) )).
I am reading a tutorial that uses the following example (that I'll generalize somewhat):
f :: Foo -> (Int, Foo)
...
fList :: Foo -> [Int]
fList foo = x : fList bar
where
(x, bar) = f foo
My question lies in the fact that it seems you can refer to x and bar, by name, outside of the tuple where they are obtained. This would seem to act like destructuring parameter lists in other languages, if my guess is correct. (In other words, I didn't have to do the following:)
fList foo = (fst tuple) : fList (snd tuple)
where
tuple = f foo
Am I right about this behavior? I've never seen it mentioned yet in the tutorials/books I've been reading. Can someone point me to more info on the subject?
Edit: Can anything (lists, arrays, etc.) be destructured in a similar way, or can you only do this with tuples?
Seeing your edit, I think what your asking about is Pattern matching.
And to answer your question: Yes, anything you can construct, you can also 'deconstruct' using the constructors. For example, you're probably familiar with this form of pattern matching:
head :: [a] -> a
head (x:xs) = x
head [] = error "Can't take head of empty list"
However, there are more places where you can use pattern matching, other valid notations are:
head xs = case xs of
(y:ys) -> y
[] -> error "Can't take head of empty list"
head xs = let (y:ys) = xs
in y
head xs = y
where
(y:ys) = xs
Note that the last two examples are a bit different from the first to because they give different error messages when you call them with an empty list.
Although these examples are specific to lists, you can do the same with other data types, like so:
first :: (a, b) -> a
first tuple = x
where
(x, y) = tuple
second :: (a, b) -> b
second tuple = let (x, y) = tuple
in y
fromJust :: Maybe a -> a
fromJust ma = x
where
(Just x) = ma
Again, the last function will also crash if you call it with Nothing.
To sum up; if you can create something using constructors (like (:) and [] for lists, or (,) for tuples, or Nothing and Just for Maybe), you can use those same constructors to do pattern matching in a variety of ways.
Am I right about this behavior?
Yes. The names exist only in the block where you have defined them, though. In your case, this means the logical unit that your where clause is applied to, i.e. the expression inside fList.
Another way to look at it is that code like this
x where x = 3
is roughly equivalent to
let x = 3 in x
Yes, you're right. Names bound in a where clause are visible to the full declaration preceding the where clause. In your case those names are f and bar.
(One of the hard things about learning Haskell is that it is not just permitted but common to use variables in the source code in locations that precede the locations where those variables are defined.)
The place to read more about where clauses is in the Haskell 98 Report or in one of the many fine tutorials to be found at haskell.org.