facing issue using Multithreading in exe - multithreading

I am facing issue in multi threading .
Case : I am creating exe to download photos from some another website , As there are 1000's of photos coming from other server i have implemented multi-threading, but that is not working properly
In Main() , i have called a method named as ThreadMain();
and In ThreadMain(); function, we have divided task into ten threads like
ThreadStart jobOne = new ThreadStart(ThreadOne);
Thread threadOne = new Thread(jobOne);
// Start the thread
threadOne.Start();
ThreadStart jobTwo = new ThreadStart(ThreadTwo);
Thread threadTwo = new Thread(jobTwo);
threadTwo.Start();
ThreadStart jobThree = new ThreadStart(ThreadThree);
Thread threadThree = new Thread(jobThree);
threadThree.Start();
etc upto 10 threads
Then further we have defined static method like
static void ThreadOne()
{
database tasks
}
static void ThreadTwo()
{
database tasks
}
static void ThreadThree()
{
database tasks
}
Upto 10 jobs
But After completing threads,console window does not close itself Or i am not able to know whether threads are completed or NOT ? Please advice

use background workers.
They are a special kind of thread which runs in your program. You can use the "Progress" property of the background worker to report the progress to another method and in the method compute the necessary criteria and check if the threads are closed and finally close the program.
If you do not want to alter the structure of the program another method would be to have another thread called "watcherThread" (call it wat ever u want) and make this thread run continuosly in intervals of three or five seconds based upon your general execution time and have it check the isRunning property of all the other threads or threadState property of all the other threads and once you know all threads have completely run you can safely close your windows using "environment.exit(0);"
Some references
http://msdn.microsoft.com/en-us/library/cc221403(v=vs.95).aspx
http://www.dotnetperls.com/backgroundworker
http://midnightprogrammer.net/post/Using-Background-Worker-in-C.aspx
http://csharptuning.blogspot.com/2007/05/background-worker.html

Related

Understanding Threads Swift

I sort of understand threads, correct me if I'm wrong.
Is a single thread allocated to a piece of code until that code has completed?
Are the threads prioritised to whichever piece of code is run first?
What is the difference between main queue and thread?
My most important question:
Can threads run at the same time? If so how can I specify which parts of my code should run at a selected thread?
Let me start this way. Unless you are writing a special kind of application (and you will know if you are), forget about threads. Working with threads is complex and tricky. Use dispatch queues… it's simpler and easier.
Dispatch queues run tasks. Tasks are closures (blocks) or functions. When you need to run a task off the main dispatch queue, you call one of the dispatch_ functions, the primary one being dispatch_async(). When you call dispatch_async(), you need to specify which queue to run the task on. To get a queue, you call one of the dispatch_queue_create() or dispatch_get_, the primary one being dispatch_get_global_queue.
NOTE: Swift 3 changed this from a function model to an object model. The dispatch_ functions are instance methods of DispatchQueue. The dispatch_get_ functions are turned into class methods/properties of DispatchQueue
// Swift 3
DispatchQueue.global(qos: .background).async {
var calculation = arc4random()
}
// Swift 2
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0)) {
var calculation = arc4random()
}
The trouble here is any and all tasks which update the UI must be run on the main thread. This is usually done by calling dispatch_async() on the main queue (dispatch_get_main_queue()).
// Swift 3
DispatchQueue.global(qos: .background).async {
var calculation = arc4random()
DispatchQueue.main.async {
print("\(calculation)")
}
}
// Swift 2
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0)) {
var calculation = arc4random()
dispatch_async(dispatch_get_main_queue()) {
print("\(calculation)")
}
}
The gory details are messy. To keep it simple, dispatch queues manage thread pools. It is up to the dispatch queue to create, run, and eventually dispose of threads. The main queue is a special queue which has only 1 thread. The operating system is tasked with assigning threads to a processor and executing the task running on the thread.
With all that out of the way, now I will answer your questions.
Is a single thread allocated to a piece of code until that code has completed?
A task will run in a single thread.
Are the threads prioritised to whichever piece of code is run first?
Tasks are assigned to a thread. A task will not change which thread it runs on. If a task needs to run in another thread, then it creates a new task and assigns that new task to the other thread.
What is the difference between main queue and thread?
The main queue is a dispatch queue which has 1 thread. This single thread is also known as the main thread.
Can threads run at the same time?
Threads are assigned to execute on processors by the operating system. If your device has multiple processors (they all do now-a-days), then multiple threads are executing at the same time.
If so how can I specify which parts of my code should run at a selected thread?
Break you code into tasks. Dispatch the tasks on a dispatch queue.

Limit number of concurrent thread in a thread pool

In my code I have a loop, inside this loop I send several requests to a remote webservice. WS providers said: "The webservice can host at most n threads", so i need to cap my code since I can't send n+1 threads.
If I've to send m threads I would that first n threads will be executed immediately and as soon one of these is completed a new thread (one of the remaining m-n threads) will be executed and so on, until all m threads are executed.
I have thinked of a Thread Pool and explicit setting of the max thread number to n. Is this enough?
For this I would avoid the use of multiple threads. Instead, wrapping the entire loop up which can be run on a single thread. However, if you do want to launch multiple threads using the/a thread pool then I would use the Semaphore class to facilitate the required thread limit; here's how...
A semaphore is like a mean night club bouncer, it has been provide a club capacity and is not allowed to exceed this limit. Once the club is full, no one else can enter... A queue builds up outside. Then as one person leaves another can enter (analogy thanks to J. Albahari).
A Semaphore with a value of one is equivalent to a Mutex or Lock except that the Semaphore has no owner so that it is thread ignorant. Any thread can call Release on a Semaphore whereas with a Mutex/Lock only the thread that obtained the Mutex/Lock can release it.
Now, for your case we are able to use Semaphores to limit concurrency and prevent too many threads from executing a particular piece of code at once. In the following example five threads try to enter a night club that only allows entry to three...
class BadAssClub
{
static SemaphoreSlim sem = new SemaphoreSlim(3);
static void Main()
{
for (int i = 1; i <= 5; i++)
new Thread(Enter).Start(i);
}
// Enfore only three threads running this method at once.
static void Enter(int i)
{
try
{
Console.WriteLine(i + " wants to enter.");
sem.Wait();
Console.WriteLine(i + " is in!");
Thread.Sleep(1000 * (int)i);
Console.WriteLine(i + " is leaving...");
}
finally
{
sem.Release();
}
}
}
I hope this helps.
Edit. You can also use the ThreadPool.SetMaxThreads Method. This method restricts the number of threads allowed to run in the thread pool. But it does this 'globally' for the thread pool itself. This means that if you are running SQL queries or other methods in libraries that you application uses then new threads will not be spun-up due to this blocking. This may not be relevant to you, in which case use the SetMaxThreads method. If you want to block for a particular method however, it is safer to use Semphores.

.NET - Multiple Timers instances mean Multiple Threads?

I already have a windows service running with a System.Timers.Timer that do a specific work. But, I want some works to run at the same time, but in different threads.
I've been told to create a different System.Timers.Timer instance. Is this correct? Is this way works running in parallel?
for instance:
System.Timers.Timer tmr1 = new System.Timers.Timer();
tmr1.Elapsed += new ElapsedEventHandler(DoWork1);
tmr1.Interval = 5000;
System.Timers.Timer tmr2 = new System.Timers.Timer();
tmr2.Elapsed += new ElapsedEventHandler(DoWork2);
tmr2.Interval = 5000;
Will tmr1 and tmr2 run on different threads so that DoWork1 and DoWork2 can run at the same time, i.e., concurrently?
Thanks!
It is not incorrect.
Be careful. System.Timers.Timer will start a new thread for every Elapsed event. You'll get in trouble when your Elapsed event handler takes too long. Your handler will be called again on another thread, even though the previous call wasn't completed yet. This tends to produce hard to diagnose bugs. Something you can avoid by setting the AutoReset property to false. Also be sure to use try/catch in your event handler, exceptions are swallowed without diagnostic.
Multiple timers might mean multiple threads. If two timer ticks occur at the same time (i.e. one is running and another fires), those two timer callbacks will execute on separate threads, neither of which will be the main thread.
It's important to note, though, that the timers themselves don't "run" on a thread at all. The only time a thread is involved is when the timer's tick or elapsed event fires.
On another note, I strongly discourage you from using System.Timers.Timer. The timer's elapsed event squashes exceptions, meaning that if an exception escapes your event handler, you'll never know it. It's a bug hider. You should use System.Threading.Timer instead. System.Timers.Timer is just a wrapper around System.Threading.Timer, so you get the same timer functionality without the bug hiding.
See Swallowing exceptions is hiding bugs for more info.
Will tmr1 and tmr2 run on different threads so that DoWork1 and DoWork2 can run at the same time, i.e., concurrently?
At the start, yes. However, what is the guarantee both DoWork1 and DoWork2 would finish within 5 seconds? Perhaps you know the code inside DoWorkX and assume that they will finish within 5 second interval, but it may happen that system is under load one of the items takes more than 5 seconds. This will break your assumption that both DoWorkX would start at the same time in the subsequent ticks. In that case even though your subsequent start times would be in sync, there is a danger of overlapping current work execution with work execution which is still running from the last tick.
If you disable/enable respective timers inside DoWorkX, however, your start times will go out of sync from each other - ultimately possible they could get scheduled over the same thread one after other. So, if you are OK with - subsequent start times may not be in sync - then my answer ends here.
If not, this is something you can attempt:
static void Main(string[] args)
{
var t = new System.Timers.Timer();
t.Interval = TimeSpan.FromSeconds(5).TotalMilliseconds;
t.Elapsed += (sender, evtArgs) =>
{
var timer = (System.Timers.Timer)sender;
timer.Enabled = false; //disable till work done
// attempt concurrent execution
Task work1 = Task.Factory.StartNew(() => DoWork1());
Task work2 = Task.Factory.StartNew(() => DoWork2());
Task.Factory.ContinueWhenAll(new[]{work1, work2},
_ => timer.Enabled = true); // re-enable the timer for next iteration
};
t.Enabled = true;
Console.ReadLine();
}
Kind of. First, check out the MSDN page for System.Timers.Timer: http://msdn.microsoft.com/en-us/library/system.timers.timer.aspx
The section you need to be concerned with is quoted below:
If the SynchronizingObject property is null, the Elapsed event is
raised on a ThreadPool thread. If processing of the Elapsed event
lasts longer than Interval, the event might be raised again on another
ThreadPool thread. In this situation, the event handler should be
reentrant.
Basically, this means that where the Timer's action gets run is not such that each Timer has its own thread, but rather that by default, it uses the system ThreadPool to run the actions.
If you want things to run at the same time (kick off all at the same time) but run concurrently, you can not just put multiple events on the elapsed event. For example, I tried this in VS2012:
static void testMethod(string[] args)
{
System.Timers.Timer mytimer = new System.Timers.Timer();
mytimer.AutoReset = false;
mytimer.Interval = 3000;
mytimer.Elapsed += (x, y) => {
Console.WriteLine("First lambda. Sleeping 3 seconds");
System.Threading.Thread.Sleep(3000);
Console.WriteLine("After sleep");
};
mytimer.Elapsed += (x, y) => { Console.WriteLine("second lambda"); };
mytimer.Start();
Console.WriteLine("Press any key to go to end of method");
Console.ReadKey();
}
The output was this:
Press any key to go to end of method
First lambda.
Sleeping 3 seconds
After sleep
second lambda
So it executes them consecutively not concurrently. So if you want "a bunch of things to happen" upon each timer execution, you have to launch a bunch of tasks (or queue up the ThreadPool with Actions) in your Elapsed handler. It may multi-thread them, or it may not, but in my simple example, it did not.
Try my code yourself, it's quite simple to illustrate what's happening.

Are Tasks created as background threads?

I'm just wondering whether the new Task class in dot.net 4 is creating a background or foreground thread ?
Normally I'd set "IsBackground" on a Thread, but there's no such attribute on a Task.
I've not been able to find any documentation of this on MSDN :-(
Shouldn't be tough to verify:
class Program
{
static void Main()
{
Task
.Factory
.StartNew(() => Console.WriteLine(Thread.CurrentThread.IsBackground))
.Wait();
}
}
And the answer is ...
ǝnɹʇ
If you are starting a Task<T> using Task.Run(), then yes.
If you are using async and await, then no. Excerpt from here:
"The async and await keywords don't cause additional threads to be created. Async methods don't require multithreading because an async method doesn't run on its own thread. The method runs on the current synchronization context and uses time on the thread only when the method is active. You can use Task.Run to move CPU-bound work to a background thread, but a background thread doesn't help with a process that's just waiting for results to become available."
It appears to run as a background thread.
See this thread:
Running multiple C# Task Async
Tasks are executed by threads which are coming from the system thread pool. A thread that comes from thread pool is executed in background by default.
If you are not yet convinced of a background task, just try to access a GUI element from within a Task like:
public async Task<int> ProcessStuff_Async()
{
while(true)
{
label1.Text = "processing next item";
to get the run time exception:
Cross-thread operation not valid:
Control 'label1' accessed from a thread other than the thread it was created on.
just like with the good old regular background threads.
There is info in MSDN docs (as of 2017 :-) , e.g.:
The best way to handle this ... is to start a background thread which
does the work using Task.Run, and await its result. This will allow
the UI to feel smooth as the work is being done.
This doc even has a section What happens under the covers.

What are working threads?

What are this working threads? How to implement them? And when to use them. I ask this because many people mention them but I dont find an the net some example of them. Or is just a saying for creating threads? Thanks.
Working threads isn't itself a meaningful term in the thread world.
I guess you mean to say," What are worker threads" ?
In that case, let me tell you that a worker thread is commonly used to handle background tasks that the user shouldn't have to wait for to continue using your application.
e.g Recalculation and background printing.
For implementing the worker thread, the controlling function should be defined which defines the thread. When this function is entered, the thread starts, and when it exits, the thread terminates. This function should have the following prototype : More Information
UINT MyControllingFunction( LPVOID pParam );
A short snippet to implement the controlling function of worker thread,
UINT MyThreadProc( LPVOID pParam )
{
CMyObject* pObject = (CMyObject*)pParam;
if (pObject == NULL ||
!pObject->IsKindOf(RUNTIME_CLASS(CMyObject)))
return 1; // if pObject is not valid
// do something with 'pObject'
return 0; // thread completed successfully
}
// inside a different function in the program
.
.
.
pNewObject = new CMyObject;
AfxBeginThread(MyThreadProc, pNewObject);
.
.
.
"Worker thread" is a generic term for a thread which performs some task independent of some primary thread. Depending on usage, it may simply mean any thread other than the primary UI thread, or it may mean a thread which performs a well-scoped task (i.e. a 'job' rather than a continuous operation which lasts the lifetime of the application).
For example, you might spawn a worker thread to retrieve a file from a remote computer over a network. It might send progress updates the application's main thread.
I use a worker, or background thread, any time that I want to perform a lengthy task without tying up my user interface. Threads often allow me to simplify my code by making a continuous series of statements, rather than a convoluted, non-blocking architecture.

Resources