Is there a way to define a string pointer in the .text part of the assembly code like this?
SECTION .text
global main
main:
fmt: dd "%s", 10, 0
or maybe have the string constructed and have a register pointing to it, put all of this could be done in the .text section?
Assemblers are pretty dumb and you have to write all things explicitly, like this:
SECTION .text
global main
main:
; Some code here, you don't want to execute data.
mov ebx, fmt ; ebx points to fmt[0] ('%')
mov eax, dword [pfmt] ; eax also points to fmt[0] ('%')
; Some more code here.
pfmt dd fmt ; pfmt is a constant pointer to fmt[0] ('%')
fmt db "%s", 10, 0 ; fmt is a constant string
You may be able to use macros to simplify coding:
%macro LoadRegWithStrAddr 2+
jmp %%endstr
%%str: db %2
%%endstr:
mov %1, %%str
%endmacro
SECTION .text
global main
main:
LoadRegWithStrAddr ebx, "%s", 10, 0 ; ebx points to "%s\n"
LoadRegWithStrAddr ebx, "%s", 10, 0 expands into:
jmp %%endstr
%%str: db "%s", 10, 0
%%endstr:
mov ebx, %%str
See NASM documentation.
Related
This question already has answers here:
How to convert a binary integer number to a hex string?
(3 answers)
Closed 3 years ago.
I am trying to print address of variable in NASM x86 assembly. When I assemble this code it assembles fine, however when I run this code it prints two characters instead of the address.
section .bss
Address: RESB 4
section .data
variable db 1
section .text
global _start
_start:
mov eax , variable ; variable Address is stored in eax register
mov [Address] , dword eax ; move the value of eax to Address
mov eax , 4 ; write system call in linux
mov ebx , 1 ; stdout file descriptor
mov ecx , Address ; memory address to be printed.
mov edx , 4 ; 4 bytes to be print
int 0x80
mov eax , 1
int 0x80
screenshot:
You should just format the output as hex number. You can use printf from C for this purpose
extern printf
section .bss
Address: RESB 4
section .data
variable db 1
fmt db "0x%x", 10, 0 ; format string
section .text
global _start
_start:
mov eax , variable ; variable Address is stored in eax register
mov [Address] , dword eax ; move the value of eax to Address
push dword [Address] ; push value of Address
push dword fmt ; address of format string
call printf ; calling printf
add esp, 8 ; pop stack 2*4 bytes after passing two variables to printf
mov eax, 0 ; exit code 0
int 0x80
Any good NASM/Intel Assembly programmers out there? If so, I have a question for you!
Every tutorial I can find online, shows the usage of "printf" for printing the actual value of ARGC to the screen (fd:/dev/stdout). Is it not possible to simply print it with sys_write() for example:
SEGMENT .data ; nothing here
SEGMENT .text ; sauce
global _start
_start:
pop ECX ; get ARGC value
mov EAX, 4 ; sys_write()
mov EBX, 1 ; /dev/stdout
mov EDX, 1 ; a single byte
int 0x80
mov EAX, 1 ; sys_exit()
mov EBX, 0 ; return 0
int 0x80
SEGMENT .bss ; nothing here
When I run this, I get no output at all. I have tried copying ESP into EBP and tried using byte[EBP+4], (i was told the brackets de-reference the memory address).
I can confirm that the value when compared to a constant, works. For instance,
this code works:
pop ebp ; put the first argument on the stack
mov ebp, esp ; make a copy
cmp byte[ebp+4],0x5 ; does it equal 5?
je _good ; goto _good, &good, good()
jne _bad ; goto _bad, &bad, bad()
When we "pop" the stack, we technically should get the full number of arguments, no? Oh, btw, I compile with:
nasm -f elf test.asm -o test.o
ld -o test test.o
not sure if that is relevant. Let me know if i need to provide more information, or format my code for readability.
At least 2 problems.
You need to pass a pointer to the thing you want to print.
You probably want to convert to text.
Something like this should work:
SEGMENT .text ; sauce
global _start
_start:
mov ecx, esp ; pointer to ARGC on stack
add byte [esp], '0' ; convert to text assuming single digit
mov EAX, 4 ; sys_write()
mov EBX, 1 ; /dev/stdout
mov EDX, 1 ; a single byte
int 0x80
mov EAX, 1 ; sys_exit()
mov EBX, 0 ; return 0
int 0x80
Everyone's comments where very helpful! I am honored that you all pitched in and helped! I have used #Jester's code,
SEGMENT .text ; sauce
global _start
_start:
mov ecx, esp ; pointer to ARGC on stack
add byte [esp], '0' ; convert to text assuming single digit
mov EAX, 4 ; sys_write()
mov EBX, 1 ; /dev/stdout
mov EDX, 1 ; a single byte
int 0x80
mov EAX, 1 ; sys_exit()
mov EBX, 0 ; return 0
int 0x80
Which works perfectly when compiled, linked and loaded. The sys_write() function requires a pointer, such like in the common "Hello World" example, the symbol "msg" is a pointer as seen in the code below.
SECTION .data ; initialized data
msg: db "Hello World!",0xa
SECTION .text ; workflow
global _start
_start:
mov EAX, 4
mov EBX, 1
mov ECX, msg ; a pointer!
So first, we move the stack pointer into the counter register, ECX, with the code,
mov ecx, esp ; ecx now contains a pointer!
and then convert it to a string by adding a '0' char to the value pointed to by ESP (which is ARGC), by de-referencing it with square brackets, as [ESP] like so,
add byte[esp], '0' ; update the value stored at "esp"
Again, thank you all for the great help! <3
This is the code I have and it works fine:
section .bss
bufflen equ 1024
buff: resb bufflen
whatread: resb 4
section .data
section .text
global main
main:
nop
read:
mov eax,3 ; Specify sys_read
mov ebx,0 ; Specify standard input
mov ecx,buff ; Where to read to...
mov edx,bufflen ; How long to read
int 80h ; Tell linux to do its magic
; Eax currently has the return value from linux system call..
add eax, 30h ; Convert number to ASCII digit
mov [whatread],eax ; Store how many bytes has been read to memory at loc **whatread**
mov eax,4 ; Specify sys_write
mov ebx,1 ; Specify standart output
mov ecx,whatread ; Get the address of whatread to ecx
mov edx,4 ; number of bytes to be written
int 80h ; Tell linux to do its work
mov eax, 1;
mov ebx, 0;
int 80h
Here is a simple run and output:
koray#koray-VirtualBox:~/asm/buffasm$ nasm -f elf -g -F dwarf buff.asm
koray#koray-VirtualBox:~/asm/buffasm$ gcc -o buff buff.o
koray#koray-VirtualBox:~/asm/buffasm$ ./buff
p
2koray#koray-VirtualBox:~/asm/buffasm$ ./buff
ppp
4koray#koray-VirtualBox:~/asm/buffasm$
My question is: What is with these 2 instructions:
mov [whatread],eax ; Store how many byte reads info to memory at loc whatread
mov ecx,whatread ; Get the address of whatread in ecx
Why the first one works with [] but the other one without?
When I try replacing the second line above with:
mov ecx,[whatread] ; Get the address of whatread in ecx
the executable will not run properly, it will not shown anything in the console.
Using brackets and not using brackets are basically two different things:
A bracket means that the value in the memory at the given address is meant.
An expression without a bracket means that the address (or value) itself is meant.
Examples:
mov ecx, 1234
Means: Write the value 1234 to the register ecx
mov ecx, [1234]
Means: Write the value that is stored in memory at address 1234 to the register ecx
mov [1234], ecx
Means: Write the value stored in ecx to the memory at address 1234
mov 1234, ecx
... makes no sense (in this syntax) because 1234 is a constant number which cannot be changed.
Linux "write" syscall (INT 80h, EAX=4) requires the address of the value to be written, not the value itself!
This is why you do not use brackets at this position!
I am a developer who uses high level languages, learning assembly language in my spare time. Please see the NASM program below:
section .data
section .bss
section .text
global main
main:
mov eax,21
mov ebx,9
add eax,ebx
mov ecx,eax
mov eax,4
mov ebx,1
mov edx,4
int 0x80
push ebp
mov ebp,esp
mov esp,ebp
pop ebp
ret
Here are the commands I use:
ian#ubuntu:~/Desktop/NASM/Program4$ nasm -f elf -o asm.o SystemCalls.asm
ian#ubuntu:~/Desktop/NASM/Program4$ gcc -o program asm.o
ian#ubuntu:~/Desktop/NASM/Program4$ ./program
I don't get any errors, however nothing is printed to the terminal. I used the following link to ensure the registers contained the correct values: http://docs.cs.up.ac.za/programming/asm/derick_tut/syscalls.html
You'll have to convert the integer value to a string to be able to print it with sys_write (syscall 4). The conversion could be done like this (untested):
; Converts the integer value in EAX to a string in
; decimal representation.
; Returns a pointer to the resulting string in EAX.
int_to_string:
mov byte [buffer+9],0 ; add a string terminator at the end of the buffer
lea esi,[buffer+9]
mov ebx,10 ; divisor
int_to_string_loop:
xor edx,edx ; clear edx prior to dividing edx:eax by ebx
div ebx ; EAX /= 10
add dl,'0' ; take the remainder of the division and convert it from 0..9 -> '0'..'9'
dec esi ; store it in the buffer
mov [esi],dl
test eax,eax
jnz int_to_string_loop ; repeat until EAX==0
mov eax,esi
ret
buffer: resb 10
programming in assembly requires a knowledge of ASCII codes and a some basic conversion routines. example: hexadecimal to decimal, decimal to hexadecimal are good routines to keep somewhere on some storage.
No registers can be printed as they are, you have to convert (a lot).
To be a bit more helpfull:
ASCII 0 prints nothing but some text editors (kate in kde linux) will show something on screen (a square or ...). In higher level language like C and C++ is it used to indicate NULL pointers and end of strings.
Usefull to calculate string lengths too.
10 is end of line. depending Linux or Windows there will be a carriage return (Linux) too or not (Windows/Dos).
13 is carriage return
1B is the ESC key (Linux users will now more about this)
255 is a hard return, I never knew why it is good for but it must have its purpose.
check http://www.asciitable.com/ for the entire list.
Convert the integer value to a string.
Here i have used macros pack and unpack to convert integers to string and macro unpack to do the vice-versa
%macro write 2
mov eax, 4
mov ebx, 1
mov ecx, %1
mov edx, %2
int 80h
%endmacro
%macro read 2
mov eax,3
mov ebx,0
mov ecx,%1
mov edx,%2
int 80h
%endmacro
%macro pack 3 ; 1-> string ,2->length ,3->variable
mov esi, %1
mov ebx,0
%%l1:
cmp byte [esi], 10
je %%exit
imul ebx,10
movzx edx,byte [esi]
sub edx,'0'
add ebx,edx
inc esi
jmp %%l1
%%exit:
mov [%3],ebx
%endmacro
%macro unpack 3 ; 1-> string ,2->length ,3->variable
mov esi, %1
mov ebx,0
movzx eax, byte[%3]
mov byte[%2],0
cmp eax, 0
jne %%l1
mov byte[%2],1
push eax
jmp %%exit2
%%l1:
mov ecx,10
mov edx,0
div ecx
add edx,'0'
push edx
inc byte[%2]
cmp eax, 0
je %%exit2
jmp %%l1
%%exit2:
movzx ecx,byte[%2]
%%l2:
pop edx
mov [esi],dl
inc esi
loop %%l2
%endmacro
section .data ; data section
msg1: db "First number : " ;
len1: equ $-msg1 ;
msg2: db "Second number : " ;
len2: equ $-msg2 ;
msg3: db "Sum : " ;
len3: equ $-msg3 ;
ln: db 10
lnl: equ $-ln
var1: resb 10
var2: resb 10
str1: resb 10
str2: resb 10
ans: resb 10
ansvar: resb 10
ansl: db ''
l1: db ''
l2: db ''
section.text ;code
global _start
_start:
write msg1,len1
read str1,10
pack str1,l1,var1
write msg2,len2
read str2,10
pack str2,l2,var2
mov al,[var1]
add al,[var2]
mov [ansvar],al
unpack ans,ansl,ansvar
write msg3,len3
write ans,10
write ln,lnl
mov ebx,0 ; exit code, 0=normal
mov eax,1 ; exit command to kernel
int 0x80 ; interrupt 80 hex, call kernel
To assembler, link and run:
nasm -f elf add.asm
ld -s -o add add.o
./add
Suppose that I have an integer number in a register, how can I print it? Can you show a simple example code?
I already know how to print a string such as "hello, world".
I'm developing on Linux.
If you're already on Linux, there's no need to do the conversion yourself. Just use printf instead:
;
; assemble and link with:
; nasm -f elf printf-test.asm && gcc -m32 -o printf-test printf-test.o
;
section .text
global main
extern printf
main:
mov eax, 0xDEADBEEF
push eax
push message
call printf
add esp, 8
ret
message db "Register = %08X", 10, 0
Note that printf uses the cdecl calling convention so we need to restore the stack pointer afterwards, i.e. add 4 bytes per parameter passed to the function.
You have to convert it in a string; if you're talking about hex numbers it's pretty easy. Any number can be represented this way:
0xa31f = 0xf * 16^0 + 0x1 * 16^1 + 3 * 16^2 + 0xa * 16^3
So when you have this number you have to split it like I've shown then convert every "section" to its ASCII equivalent.
Getting the four parts is easily done with some bit magic, in particular with a right shift to move the part we're interested in in the first four bits then AND the result with 0xf to isolate it from the rest. Here's what I mean (soppose we want to take the 3):
0xa31f -> shift right by 8 = 0x00a3 -> AND with 0xf = 0x0003
Now that we have a single number we have to convert it into its ASCII value. If the number is smaller or equal than 9 we can just add 0's ASCII value (0x30), if it's greater than 9 we have to use a's ASCII value (0x61).
Here it is, now we just have to code it:
mov si, ??? ; si points to the target buffer
mov ax, 0a31fh ; ax contains the number we want to convert
mov bx, ax ; store a copy in bx
xor dx, dx ; dx will contain the result
mov cx, 3 ; cx's our counter
convert_loop:
mov ax, bx ; load the number into ax
and ax, 0fh ; we want the first 4 bits
cmp ax, 9h ; check what we should add
ja greater_than_9
add ax, 30h ; 0x30 ('0')
jmp converted
greater_than_9:
add ax, 61h ; or 0x61 ('a')
converted:
xchg al, ah ; put a null terminator after it
mov [si], ax ; (will be overwritten unless this
inc si ; is the last one)
shr bx, 4 ; get the next part
dec cx ; one less to do
jnz convert_loop
sub di, 4 ; di still points to the target buffer
PS: I know this is 16 bit code but I still use the old TASM :P
PPS: this is Intel syntax, converting to AT&T syntax isn't difficult though, look here.
Linux x86-64 with printf
main.asm
default rel ; make [rel format] the default, you always want this.
extern printf, exit ; NASM requires declarations of external symbols, unlike GAS
section .rodata
format db "%#x", 10, 0 ; C 0-terminated string: "%#x\n"
section .text
global main
main:
sub rsp, 8 ; re-align the stack to 16 before calling another function
; Call printf.
mov esi, 0x12345678 ; "%x" takes a 32-bit unsigned int
lea rdi, [rel format]
xor eax, eax ; AL=0 no FP args in XMM regs
call printf
; Return from main.
xor eax, eax
add rsp, 8
ret
GitHub upstream.
Then:
nasm -f elf64 -o main.o main.asm
gcc -no-pie -o main.out main.o
./main.out
Output:
0x12345678
Notes:
sub rsp, 8: How to write assembly language hello world program for 64 bit Mac OS X using printf?
xor eax, eax: Why is %eax zeroed before a call to printf?
-no-pie: plain call printf doesn't work in a PIE executable (-pie), the linker only automatically generates a PLT stub for old-style executables. Your options are:
call printf wrt ..plt to call through the PLT like traditional call printf
call [rel printf wrt ..got] to not use a PLT at all, like gcc -fno-plt.
Like GAS syntax call *printf#GOTPCREL(%rip).
Either of these are fine in a non-PIE executable as well, and don't cause any inefficiency unless you're statically linking libc. In which case call printf can resolve to a call rel32 directly to libc, because the offset from your code to the libc function would be known at static linking time.
See also: Can't call C standard library function on 64-bit Linux from assembly (yasm) code
If you want hex without the C library: Printing Hexadecimal Digits with Assembly
Tested on Ubuntu 18.10, NASM 2.13.03.
It depends on the architecture/environment you are using.
For instance, if I want to display a number on linux, the ASM code will be different from the one I would use on windows.
Edit:
You can refer to THIS for an example of conversion.
I'm relatively new to assembly, and this obviously is not the best solution,
but it's working. The main function is _iprint, it first checks whether the
number in eax is negative, and prints a minus sign if so, than it proceeds
by printing the individual numbers by calling the function _dprint for
every digit. The idea is the following, if we have 512 than it is equal to: 512 = (5 * 10 + 1) * 10 + 2 = Q * 10 + R, so we can found the last digit of a number by dividing it by 10, and
getting the reminder R, but if we do it in a loop than digits will be in a
reverse order, so we use the stack for pushing them, and after that when
writing them to stdout they are popped out in right order.
; Build : nasm -f elf -o baz.o baz.asm
; ld -m elf_i386 -o baz baz.o
section .bss
c: resb 1 ; character buffer
section .data
section .text
; writes an ascii character from eax to stdout
_cprint:
pushad ; push registers
mov [c], eax ; store ascii value at c
mov eax, 0x04 ; sys_write
mov ebx, 1 ; stdout
mov ecx, c ; copy c to ecx
mov edx, 1 ; one character
int 0x80 ; syscall
popad ; pop registers
ret ; bye
; writes a digit stored in eax to stdout
_dprint:
pushad ; push registers
add eax, '0' ; get digit's ascii code
mov [c], eax ; store it at c
mov eax, 0x04 ; sys_write
mov ebx, 1 ; stdout
mov ecx, c ; pass the address of c to ecx
mov edx, 1 ; one character
int 0x80 ; syscall
popad ; pop registers
ret ; bye
; now lets try to write a function which will write an integer
; number stored in eax in decimal at stdout
_iprint:
pushad ; push registers
cmp eax, 0 ; check if eax is negative
jge Pos ; if not proceed in the usual manner
push eax ; store eax
mov eax, '-' ; print minus sign
call _cprint ; call character printing function
pop eax ; restore eax
neg eax ; make eax positive
Pos:
mov ebx, 10 ; base
mov ecx, 1 ; number of digits counter
Cycle1:
mov edx, 0 ; set edx to zero before dividing otherwise the
; program gives an error: SIGFPE arithmetic exception
div ebx ; divide eax with ebx now eax holds the
; quotent and edx the reminder
push edx ; digits we have to write are in reverse order
cmp eax, 0 ; exit loop condition
jz EndLoop1 ; we are done
inc ecx ; increment number of digits counter
jmp Cycle1 ; loop back
EndLoop1:
; write the integer digits by poping them out from the stack
Cycle2:
pop eax ; pop up the digits we have stored
call _dprint ; and print them to stdout
dec ecx ; decrement number of digits counter
jz EndLoop2 ; if it's zero we are done
jmp Cycle2 ; loop back
EndLoop2:
popad ; pop registers
ret ; bye
global _start
_start:
nop ; gdb break point
mov eax, -345 ;
call _iprint ;
mov eax, 0x01 ; sys_exit
mov ebx, 0 ; error code
int 0x80 ; край
Because you didn't say about number representation I wrote the following code for unsigned number with any base(of course not too big), so you could use it:
BITS 32
global _start
section .text
_start:
mov eax, 762002099 ; unsigned number to print
mov ebx, 36 ; base to represent the number, do not set it too big
call print
;exit
mov eax, 1
xor ebx, ebx
int 0x80
print:
mov ecx, esp
sub esp, 36 ; reserve space for the number string, for base-2 it takes 33 bytes with new line, aligned by 4 bytes it takes 36 bytes.
mov edi, 1
dec ecx
mov [ecx], byte 10
print_loop:
xor edx, edx
div ebx
cmp dl, 9 ; if reminder>9 go to use_letter
jg use_letter
add dl, '0'
jmp after_use_letter
use_letter:
add dl, 'W' ; letters from 'a' to ... in ascii code
after_use_letter:
dec ecx
inc edi
mov [ecx],dl
test eax, eax
jnz print_loop
; system call to print, ecx is a pointer on the string
mov eax, 4 ; system call number (sys_write)
mov ebx, 1 ; file descriptor (stdout)
mov edx, edi ; length of the string
int 0x80
add esp, 36 ; release space for the number string
ret
It's not optimised for numbers with base of power of two and doesn't use printf from libc.
The function print outputs the number with a new line. The number string is formed on stack. Compile by nasm.
Output:
clockz
https://github.com/tigertv/stackoverflow-answers/tree/master/8194141-how-to-print-a-number-in-assembly-nasm