Haskell beginner, trying to output a list - haskell

I suppose everyone here already has seen one of these (or at least a similar) question, still I need to ask because I couldn't find the answer to this question anywhere (mostly because I don't know what exactly I should be looking for)
I wrote this tiny script, in which printTriangle is supposed to print out the pascal triangle.
fac = product . enumFromTo 2
binomial n k = (product (drop (k-1) [2..n])) `div` (fac (n-k))
pascalTriangle maxRow =
do row<-[0..maxRow-1]
return (binomialRow row)
where
binomialRow row =
do k<-[0..row]
return (binomial row k)
printTriangle :: Int -> IO ()
printTriangle rows = do row<-(triangle)
putStrLn (show row)
where
triangle = pascalTriangle rows
Now for reasons that are probably obvious to the trained eye, but completely shrouded in mystery for me, i get the following error when trying to load this in ghci:
Couldn't match expected type `IO t0' with actual type `[[Int]]'
In a stmt of a 'do' expression: row <- (triangle)
In the expression:
do { row <- (triangle);
putStrLn (show row) }
In
an equation for `printTriangle':
printTriangle rows
= do { row <- (triangle);
putStrLn (show row) }
where
triangle = pascalTriangle rows
what im trying to do is something like I call printTriangle like this:
printTriangle 3
and I get this output:
[1]
[1,1]
[1,2,1]
If anyone could explain to me why what I'm doing here doesn't work (to be honest, I am not TOO sure what exactly I am doing here; I am used to imperative languages and this whole functional programming thingy is still mighty confusing to me), and how I could do it in a less dumb fashion that would be great.
Thanks in advance.

You said in a comment that you thought lists were monads, but now you're not sure -- well, you're right, lists are monads! So then why doesn't your code work?
Well, because IO is also a monad. So when the compiler sees printTriangle :: Int -> IO (), and then do-notation, it says "Aha! I know what to do! He's using the IO monad!" Try to imagine its shock and dispair when it discovers that instead of IO monads, it finds list monads inside!
So that's the problem: to print, and deal with the outside world, you need to use the IO monad; inside the function, you're trying to use lists as the monad.
Let's see how this is a problem. do-notation is Haskell's syntactic sugar to lure us into its cake house and eat us .... I mean it's syntactic sugar for >>= (pronounced bind) to lure us into using monads (and enjoying it). So let's write printTriangle using bind:
printTriangle rows = (pascalTriangle rows) >>= (\row ->
putStrLn $ show row)
Okay, that was straightforward. Now do we see any problems? Well, lets look at the types. What's the type of bind? Hoogle says: (>>=) :: Monad m => m a -> (a -> m b) -> m b. Okay, thanks Hoogle. So basically, bind wants a monad type wrapping a type a personality, a function that turns a type a personality into (the same) monad type wrapping a type-b personality, and ends up with (the same) monad type wrapping a type-b personality.
So in our printTriangle, what do we have?
pascalTriangle rows :: [[Int]] -- so our monad is [], and the personality is [Int]
(\row -> putStrLn $ show row) :: [Int] -> IO () -- here the monad is IO, and the personality is ()
Well, crap. Hoogle was very clear when it told us that we had to match our monad types, and instead, we've given >>= a list monad, and a function that produces an IO monad. This makes Haskell behave like a little kid: it closes its eyes and stomps on the floor screaming "No! No! No!" and won't even look at your program, much less compile it.
So how do we appease Haskell? Well, others have already mentioned mapM_. And adding explicit type signatures to top-level functions is also a good idea -- it can sometimes help you to get compile errors sooner, rather than later (and get them you will; this is Haskell after all :) ), which makes it much much easier to understand the error messages.
I'd suggest writing a function that turns your [[Int]] into a string, and then printing the string out separately. By separating the conversion into a string from the IO-nastiness, this will allow you to get on with learning Haskell and not have to worry about mapM_ & friends until you're good and ready.
showTriangle :: [[Int]] -> String
showTriangle triangle = concatMap (\line -> show line ++ "\n") triangle
or
showTriangle = concatMap (\line -> show line ++ "\n")
Then printTriangle is a lot easier:
printTriangle :: Int -> IO ()
printTriangle rows = putStrLn (showTriangle $ pascalTriangle rows)
or
printTriangle = putStrLn . showTriangle . pascalTriangle

If you want to print elements of a list on new lines you shall see this question.
So
printTriangle rows = mapM_ print $ pascalTriangle rows
And
λ> printTriangle 3
[1]
[1,1]
[1,2,1]
Finally, what you're asking for is seems to be mapM_.

Whenever I'm coding in Haskell I always try declare the types of at least the top-level definitions. Not only does it help by documenting your functions, but also makes it easier to catch type errors. So pascalTriangle has the following type:
pascalTriangle :: Int -> [[Int]]
When the compiler sees the lines:
row<-(triangle)
...
where
triangle = pascalTriangle rows
it will infer that triangle has type:
triangle :: [[Int]]
The <- operator expects it's right-hand argument to be a monad. Because you declared your function to work on IO monad, the compiler expected that triangle had the type:
triangle :: IO something
Which clearly does not match type [[Int]]. And that's kind of what the compiler is trying to tell in it's own twisted way.
As others have stated, that style of coding is not idiomatic Haskell. It looks like the kind of code I would produce in my early Haskell days, when I still had an "imperative-oriented" mind. If you try to put aside imperative style of thinking, and open your mind to the functional style, you will find that you can solve most of your problems in a very elegant and tidy fashion.

try the following from the ghci-prompt:
> let {pascal 1 = [1]; pascal n = zipWith (+) (l++[0]) (0:l) where l = pascal (n-1)}
> putStr $ concatMap ((++"\n") . show . pascal) [1..20]
Your code is very unidiomatic Haskell. In Haskell you use higher order function to build other function. That way you can write very concise code.
Here i combine two list lazily using zipWith to produce the next row of pascals triangle pretty much the way you would compute it by hand. Then concatMap is used to produce a printable string of the triangles which is printed by putStr.

Related

In Haskell, if a function returns a "Maybe a" type just so it is safe and total, how is it useful anymore?

So I have to define a safe version of the head function that would not throw an error when [] is passed as the argument. Here it is:
safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x:_) = Just x
But now, is this function still of any use? Because suppose that type "a" is a Int, then you can add two objects of type Int, but you can't add two objects of type "Maybe Int".
As it was mentioned in comments, you can actually add two Maybes. I just wanted to give another point of view on that.
Yes, you can't directly apply (+) to Maybe Ints, but you can upgrade it to another function that is able to do so automatically.
To upgrade unary function (like (+1)) you write fmap (+1) maybeInt or (+1) <$> maybeInt. If (+1) had type Int -> Int, the fmap (+1) expression has type Maybe Int -> Maybe Int.
Upgrading bin-or-more-ary functions is a bit more complex syntax-wise: (+) <$> maybeInt <*> maybeInt or liftA2 (+) maybeInt maybeInt. Again, here we promote (+) :: Int -> Int -> Int to liftA2 (+) :: Maybe Int -> Maybe Int -> Maybe Int.
Handling Maybes this way allows you to build up a computation that works with Maybes out of pure functions and defer checking for Nothing. Or even avoid that if you eventually plug it into another function that takes Maybe as argument.
Of course, you can use fmap and liftAs on any Applicative, not just Maybe.
"Just" is one such function. Here's how you can use its result (for the ghci REPL):
import Data.Foldable (sequenceA_)
let writeLn = putStrLn . show
let supposedlyUnusable = writeLn <$> Just 0
sequenceA_ supposedlyUnusable
which prints 1 or we can continue to try the other interesting example - using the Nothing case
let supposedlyUnusable = writeLn <$> Nothing
sequenceA_ supposedlyUnusable
which doesn't print anything.
That's a complete program which works even for other instances of Traversable or Foldable where you couldn't do a case analysis on the Maybe value. <$> is the key that lets you apply a function to whatever's contained in the Maybe or any Functor and if you have two Maybes (or two of the same Applicative) you can use the pattern fn <$> applicative_a <*> applicative_b which is like fn a b but where a and b are wrapped up things like Maybe values.
So that leaves a couple of remaining ways to use a Maybe that I can think of, all of which use case analysis:
let {fn (Just n) = Just $ 1 + n; fn Nothing = Nothing}
fn v
-- but that was just a messy way of writing (1+) <$> v
...
let fn v = case v of {Just n -> Just $ 1 + n; Nothing -> Nothing}
-- and that's the same program with a different syntax
...
import Data.Maybe (fromMaybe)
fromMaybe someDefault v
-- and that extracted the `value` from `v` if we had `Just value` or else gave us `someDefault`
...
let {fn (Just n) = writeLn n; fn Nothing = putStrLn "No answer"}
-- this one extracts an action but also provides an action when there's nothing
-- it can be done using <$> and fromMaybe instead, but beginners tend to
-- find it easier because of the tutorials that resulted from the history
-- of the base library's development
let fn v = fromMaybe (putStrLn "No answer") (writeLn <$> v)
oooh, oooh! This one's neato:
import Control.Applicative
let v = Just 0 -- or Nothing, if you want
let errorcase = pure $ putStrLn "No answer"
let successcase = writeLn <$> v
sequenceA_ $ successcase <|> errorcase
-- that uses Alternative in which Maybe tries to give an answer preferring the earliest if it can
of course we also have the classic:
maybe (putStrLn "No answer") writeLn v
Safety comes with a cost. The cost is normally extra code, for avoiding error situations. Haskell has given us the way to avoid this at the compile time rather than at run time.
Let me explain with examples from other languages. Though I won't name any language, but it would be apparent which languages I am talking about. Please be sure that all languages are great in their ways, so do not take this as I am finding fault in other language.
In some languages you have pointers and the way you will do safeHead is to return either int pointer or null pointer. You will have to de-reference pointer to get the value and when you de-reference null pointer you will get error. To avoid this, extra code will be needed to check for null pointer, and do something when it is null.
In some dynamic languages, you have variables assigned to null. So in above example your variable could be type int or it could be null. And what will happen if you add null to int? Most probably undefined situation. Again special handling needs to be done for the null case.
In Haskell too you will have to do the same, you will have to guard the null situation with extra code. So what's the difference? The difference in Haskell is doing it at the compile time and not at the run time.* i.e. the moment you have this kind of code along with your definition of safeHead, p = safeHead xs + safeHead ys, the code will give error at the compile time. You will have to do something more for addition if type Maybe Int. You can write your function for adding two or multiple Maybe Ints or create newype for Maybe Int and overload + or do something as mentioned in other answers.
But whatever you do, you do it before unit testing. Definitely much before it goes on production. And earlier the error is caught lesser is the cost. That's where the advantage of type safe Haskell comes in handy.
* There could be mechanism in other languages to handle this at compile time.

How can I run multiple Haskell IO actions and store the results?

I'm a Haskell beginner, so sorry in advance for the newbie question. I only have a very superficial understanding of monads.
I'm using the function insert from the module Persistent. (I've been following the tutorial here.) It inserts something in a database, and returns the ID. I can use it like this:
resultId <- insert myItem
That works fine for a single item. I can print out the resultId like this:
liftIO $ print resultId
But what if my myItem is actually a list of arbitrary length? I want to map insert over this list, which I can seem to do with:
resultIds <- mapM_ insert myItemList
but then if I try to print out the values:
liftIO $ print resultIds
I just get (). What am I doing wrong?
You are quite close: you need mapM :: Monad m => (a -> m b) -> t a -> m (t b) instead of mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
Like the name and the signature already suggest, both functions take a monadic function and a traversable (let us for now assume that that is a list) of as, and it applies the monadic function to all elements and returns a monadic function that contains a traversable (list) of the results.
So if you write:
resultIds <- mapM insert myItemList
The difference between mapM and mapM_ is that in the case of mapM_ (like the signature already suggests), you are not interested in the outcome, and thus it is not calculated. A reason for this could possibly be that the list is very long (and generated by-need), and thus the list of identifiers would never fit in memory.
then resultIds will contain a list of identifiers.
The explanation about the mapM (and mapM_) function is a bit an oversimplification, but I think that it is usually better to first get more comfortable about monads, than getting details about monadic functions completely right.

What is the logic behind allowing only same Monad types to be concatenated with `>>` operator?

Though it is okay to bind IO [[Char]] and IO () but its not allowed to bind Maybe with IO. Can someone give an example how this relaxation would lead to a bad design? Why freedom in the polymorphic type of Monad is allowed though not the Monad itself?
There are a lot of good theoretical reasons, including "that's not what Monad is." But let's step away from that for a moment and just look at the implementation details.
First off - Monad isn't magic. It's just a standard type class. Instances of Monad only get created when someone writes one.
Writing that instance is what defines how (>>) works. Usually it's done implicitly through the default definition in terms of (>>=), but that just is evidence that (>>=) is the more general operator, and writing it requires making all the same decisions that writing (>>) would take.
If you had a different operator that worked on more general types, you have to answer two questions. First, what would the types be? Second, how would you go about providing implementations? It's really not clear what the desired types would be, from your question. One of the following, I guess:
class Poly1 m n where
(>>) :: m a -> n b -> m b
class Poly2 m n where
(>>) :: m a -> n b -> n b
class Poly3 m n o | m n -> o where
(>>) :: m a -> n b -> o b
All of them could be implemented. But you lose two really important factors for using them practically.
You need to write an instance for every pair of types you plan to use together. This is a massively more complex undertaking than just an instance for each type. Something about n vs n^2.
You lose predictability. What does the operation even do? Here's where theory and practice intersect. The theory behind Monad places a lot of restrictions on the operations. Those restrictions are referred to as the "monad laws". They are beyond the ability to verify in Haskell, but any Monad instance that doesn't obey them is considered to be buggy. The end result is that you quickly can build an intuition for what the Monad operations do and don't do. You can use them without looking up the details of every type involved, because you know properties that they obey. None of those possible classes I suggested give you any kind of assurances like that. You just have no idea what they do.
I’m not sure that I understand your question correctly, but it’s definitely possible to compose Maybe with IO or [] in the same sense that you can compose IO with [].
For example, if you check the types in GHCI using :t,
getContents >>= return . lines
gives you an IO [String]. If you add
>>= return . map Text.Read.readMaybe
you get a type of IO [Maybe a], which is a composition of IO, [] and Maybe. You could then pass it to
>>= return . Data.Maybe.catMaybes
to flatten it to an IO [a]. Then you might pass the list of parsed valid input lines to a function that flattens it again and computes an output.
Putting this together, the program
import Text.Read (readMaybe)
import Data.Maybe (catMaybes)
main :: IO ()
main = getContents >>= -- IO String
return . lines >>= -- IO [String]
return . map readMaybe >>= -- IO [Maybe Int]
return . catMaybes >>= -- IO [Int]
return . (sum :: [Int] -> Int) >>= -- IO Int
print -- IO ()
with the input:
1
2
Ignore this!
3
prints 6.
It would also be possible to work with an IO (Maybe [String]), a Maybe [IO String], etc.
You can do this with >> as well. Contrived example: getContents >> (return . Just) False reads the input, ignores it, and gives you back an IO (Maybe Bool).

Haskell's (<-) in Terms of the Natural Transformations of Monad

So I'm playing around with the hasbolt module in GHCi and I had a curiosity about some desugaring. I've been connecting to a Neo4j database by creating a pipe as follows
ghci> pipe <- connect $ def {credentials}
and that works just fine. However, I'm wondering what the type of the (<-) operator is (GHCi won't tell me). Most desugaring explanations describe that
do x <- a
return x
desugars to
a >>= (\x -> return x)
but what about just the line x <- a?
It doesn't help me to add in the return because I want pipe :: Pipe not pipe :: Control.Monad.IO.Class.MonadIO m => m Pipe, but (>>=) :: Monad m => m a -> (a -> m b) -> m b so trying to desugar using bind and return/pure doesn't work without it.
Ideally it seems like it'd be best to just make a Comonad instance to enable using extract :: Monad m => m a -> a as pipe = extract $ connect $ def {creds} but it bugs me that I don't understand (<-).
Another oddity is that, treating (<-) as haskell function, it's first argument is an out-of-scope variable, but that wouldn't mean that
(<-) :: a -> m b -> b
because not just anything can be used as a free variable. For instance, you couldn't bind the pipe to a Num type or a Bool. The variable has to be a "String"ish thing, except it never is actually a String; and you definitely can't try actually binding to a String. So it seems as if it isn't a haskell function in the usual sense (unless there is a class of functions that take values from the free variable namespace... unlikely). So what is (<-) exactly? Can it be replaced entirely by using extract? Is that the best way to desugar/circumvent it?
I'm wondering what the type of the (<-) operator is ...
<- doesn't have a type, it's part of the syntax of do notation, which as you know is converted to sequences of >>= and return during a process called desugaring.
but what about just the line x <- a ...?
That's a syntax error in normal haskell code and the compiler would complain. The reason the line:
ghci> pipe <- connect $ def {credentials}
works in ghci is that the repl is a sort of do block; you can think of each entry as a line in your main function (it's a bit more hairy than that, but that's a good approximation). That's why you need (until recently) to say let foo = bar in ghci to declare a binding as well.
Ideally it seems like it'd be best to just make a Comonad instance to enable using extract :: Monad m => m a -> a as pipe = extract $ connect $ def {creds} but it bugs me that I don't understand (<-).
Comonad has nothing to do with Monads. In fact, most Monads don't have any valid Comonad instance. Consider the [] Monad:
instance Monad [a] where
return x = [x]
xs >>= f = concat (map f xs)
If we try to write a Comonad instance, we can't define extract :: m a -> a
instance Comonad [a] where
extract (x:_) = x
extract [] = ???
This tells us something interesting about Monads, namely that we can't write a general function with the type Monad m => m a -> a. In other words, we can't "extract" a value from a Monad without additional knowledge about it.
So how does the do-notation syntax do {x <- [1,2,3]; return [x,x]} work?
Since <- is actually just syntax sugar, just like how [1,2,3] actually means 1 : 2 : 3 : [], the above expression actually means [1,2,3] >>= (\x -> return [x,x]), which in turn evaluates to concat (map (\x -> [[x,x]]) [1,2,3])), which comes out to [1,1,2,2,3,3].
Notice how the arrow transformed into a >>= and a lambda. This uses only built-in (in the typeclass) Monad functions, so it works for any Monad in general.
We can pretend to extract a value by using (>>=) :: Monad m => m a -> (a -> m b) -> m b and working with the "extracted" a inside the function we provide, like in the lambda in the list example above. However, it is impossible to actually get a value out of a Monad in a generic way, which is why the return type of >>= is m b (in the Monad)
So what is (<-) exactly? Can it be replaced entirely by using extract? Is that the best way to desugar/circumvent it?
Note that the do-block <- and extract mean very different things even for types that have both Monad and Comonad instances. For instance, consider non-empty lists. They have instances of both Monad (which is very much like the usual one for lists) and Comonad (with extend/=>> applying a function to all suffixes of the list). If we write a do-block such as...
import qualified Data.List.NonEmpty as N
import Data.List.NonEmpty (NonEmpty(..))
import Data.Function ((&))
alternating :: NonEmpty Integer
alternating = do
x <- N.fromList [1..6]
-x :| [x]
... the x in x <- N.fromList [1..6] stands for the elements of the non-empty list; however, this x must be used to build a new list (or, more generally, to set up a new monadic computation). That, as others have explained, reflects how do-notation is desugared. It becomes easier to see if we make the desugared code look like the original one:
alternating :: NonEmpty Integer
alternating =
N.fromList [1..6] >>= \x ->
-x :| [x]
GHCi> alternating
-1 :| [1,-2,2,-3,3,-4,4,-5,5,-6,6]
The lines below x <- N.fromList [1..6] in the do-block amount to the body of a lambda. x <- in isolation is therefore akin to a lambda without body, which is not a meaningful thing.
Another important thing to note is that x in the do-block above does not correspond to any one single Integer, but rather to all Integers in the list. That already gives away that <- does not correspond to an extraction function. (With other monads, the x might even correspond to no values at all, as in x <- Nothing or x <- []. See also Lazersmoke's answer.)
On the other hand, extract does extract a single value, with no ifs or buts...
GHCi> extract (N.fromList [1..6])
1
... however, it is really a single value: the tail of the list is discarded. If we want to use the suffixes of the list, we need extend/(=>>)...
GHCi> N.fromList [1..6] =>> product =>> sum
1956 :| [1236,516,156,36,6]
If we had a co-do-notation for comonads (cf. this package and the links therein), the example above might get rewritten as something in the vein of:
-- codo introduces a function: x & f = f x
N.fromList [1..6] & codo xs -> do
ys <- product xs
sum ys
The statements would correspond to plain values; the bound variables (xs and ys), to comonadic values (in this case, to list suffixes). That is exactly the opposite of what we have with monadic do-blocks. All in all, as far as your question is concerned, switching to comonads just swaps which things we can't refer to outside of the context of a computation.

Why do we need monads?

In my humble opinion the answers to the famous question "What is a monad?", especially the most voted ones, try to explain what is a monad without clearly explaining why monads are really necessary. Can they be explained as the solution to a problem?
Why do we need monads?
We want to program only using functions. ("functional programming (FP)" after all).
Then, we have a first big problem. This is a program:
f(x) = 2 * x
g(x,y) = x / y
How can we say what is to be executed first? How can we form an ordered sequence of functions (i.e. a program) using no more than functions?
Solution: compose functions. If you want first g and then f, just write f(g(x,y)). This way, "the program" is a function as well: main = f(g(x,y)). OK, but ...
More problems: some functions might fail (i.e. g(2,0), divide by 0). We have no "exceptions" in FP (an exception is not a function). How do we solve it?
Solution: Let's allow functions to return two kind of things: instead of having g : Real,Real -> Real (function from two reals into a real), let's allow g : Real,Real -> Real | Nothing (function from two reals into (real or nothing)).
But functions should (to be simpler) return only one thing.
Solution: let's create a new type of data to be returned, a "boxing type" that encloses maybe a real or be simply nothing. Hence, we can have g : Real,Real -> Maybe Real. OK, but ...
What happens now to f(g(x,y))? f is not ready to consume a Maybe Real. And, we don't want to change every function we could connect with g to consume a Maybe Real.
Solution: let's have a special function to "connect"/"compose"/"link" functions. That way, we can, behind the scenes, adapt the output of one function to feed the following one.
In our case: g >>= f (connect/compose g to f). We want >>= to get g's output, inspect it and, in case it is Nothing just don't call f and return Nothing; or on the contrary, extract the boxed Real and feed f with it. (This algorithm is just the implementation of >>= for the Maybe type). Also note that >>= must be written only once per "boxing type" (different box, different adapting algorithm).
Many other problems arise which can be solved using this same pattern: 1. Use a "box" to codify/store different meanings/values, and have functions like g that return those "boxed values". 2. Have a composer/linker g >>= f to help connecting g's output to f's input, so we don't have to change any f at all.
Remarkable problems that can be solved using this technique are:
having a global state that every function in the sequence of functions ("the program") can share: solution StateMonad.
We don't like "impure functions": functions that yield different output for same input. Therefore, let's mark those functions, making them to return a tagged/boxed value: IO monad.
Total happiness!
The answer is, of course, "We don't". As with all abstractions, it isn't necessary.
Haskell does not need a monad abstraction. It isn't necessary for performing IO in a pure language. The IO type takes care of that just fine by itself. The existing monadic desugaring of do blocks could be replaced with desugaring to bindIO, returnIO, and failIO as defined in the GHC.Base module. (It's not a documented module on hackage, so I'll have to point at its source for documentation.) So no, there's no need for the monad abstraction.
So if it's not needed, why does it exist? Because it was found that many patterns of computation form monadic structures. Abstraction of a structure allows for writing code that works across all instances of that structure. To put it more concisely - code reuse.
In functional languages, the most powerful tool found for code reuse has been composition of functions. The good old (.) :: (b -> c) -> (a -> b) -> (a -> c) operator is exceedingly powerful. It makes it easy to write tiny functions and glue them together with minimal syntactic or semantic overhead.
But there are cases when the types don't work out quite right. What do you do when you have foo :: (b -> Maybe c) and bar :: (a -> Maybe b)? foo . bar doesn't typecheck, because b and Maybe b aren't the same type.
But... it's almost right. You just want a bit of leeway. You want to be able to treat Maybe b as if it were basically b. It's a poor idea to just flat-out treat them as the same type, though. That's more or less the same thing as null pointers, which Tony Hoare famously called the billion-dollar mistake. So if you can't treat them as the same type, maybe you can find a way to extend the composition mechanism (.) provides.
In that case, it's important to really examine the theory underlying (.). Fortunately, someone has already done this for us. It turns out that the combination of (.) and id form a mathematical construct known as a category. But there are other ways to form categories. A Kleisli category, for instance, allows the objects being composed to be augmented a bit. A Kleisli category for Maybe would consist of (.) :: (b -> Maybe c) -> (a -> Maybe b) -> (a -> Maybe c) and id :: a -> Maybe a. That is, the objects in the category augment the (->) with a Maybe, so (a -> b) becomes (a -> Maybe b).
And suddenly, we've extended the power of composition to things that the traditional (.) operation doesn't work on. This is a source of new abstraction power. Kleisli categories work with more types than just Maybe. They work with every type that can assemble a proper category, obeying the category laws.
Left identity: id . f = f
Right identity: f . id = f
Associativity: f . (g . h) = (f . g) . h
As long as you can prove that your type obeys those three laws, you can turn it into a Kleisli category. And what's the big deal about that? Well, it turns out that monads are exactly the same thing as Kleisli categories. Monad's return is the same as Kleisli id. Monad's (>>=) isn't identical to Kleisli (.), but it turns out to be very easy to write each in terms of the other. And the category laws are the same as the monad laws, when you translate them across the difference between (>>=) and (.).
So why go through all this bother? Why have a Monad abstraction in the language? As I alluded to above, it enables code reuse. It even enables code reuse along two different dimensions.
The first dimension of code reuse comes directly from the presence of the abstraction. You can write code that works across all instances of the abstraction. There's the entire monad-loops package consisting of loops that work with any instance of Monad.
The second dimension is indirect, but it follows from the existence of composition. When composition is easy, it's natural to write code in small, reusable chunks. This is the same way having the (.) operator for functions encourages writing small, reusable functions.
So why does the abstraction exist? Because it's proven to be a tool that enables more composition in code, resulting in creating reusable code and encouraging the creation of more reusable code. Code reuse is one of the holy grails of programming. The monad abstraction exists because it moves us a little bit towards that holy grail.
Benjamin Pierce said in TAPL
A type system can be regarded as calculating a kind of static
approximation to the run-time behaviours of the terms in a program.
That's why a language equipped with a powerful type system is strictly more expressive, than a poorly typed language. You can think about monads in the same way.
As #Carl and sigfpe point, you can equip a datatype with all operations you want without resorting to monads, typeclasses or whatever other abstract stuff. However monads allow you not only to write reusable code, but also to abstract away all redundant detailes.
As an example, let's say we want to filter a list. The simplest way is to use the filter function: filter (> 3) [1..10], which equals [4,5,6,7,8,9,10].
A slightly more complicated version of filter, that also passes an accumulator from left to right, is
swap (x, y) = (y, x)
(.*) = (.) . (.)
filterAccum :: (a -> b -> (Bool, a)) -> a -> [b] -> [b]
filterAccum f a xs = [x | (x, True) <- zip xs $ snd $ mapAccumL (swap .* f) a xs]
To get all i, such that i <= 10, sum [1..i] > 4, sum [1..i] < 25, we can write
filterAccum (\a x -> let a' = a + x in (a' > 4 && a' < 25, a')) 0 [1..10]
which equals [3,4,5,6].
Or we can redefine the nub function, that removes duplicate elements from a list, in terms of filterAccum:
nub' = filterAccum (\a x -> (x `notElem` a, x:a)) []
nub' [1,2,4,5,4,3,1,8,9,4] equals [1,2,4,5,3,8,9]. A list is passed as an accumulator here. The code works, because it's possible to leave the list monad, so the whole computation stays pure (notElem doesn't use >>= actually, but it could). However it's not possible to safely leave the IO monad (i.e. you cannot execute an IO action and return a pure value — the value always will be wrapped in the IO monad). Another example is mutable arrays: after you have leaved the ST monad, where a mutable array live, you cannot update the array in constant time anymore. So we need a monadic filtering from the Control.Monad module:
filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
filterM _ [] = return []
filterM p (x:xs) = do
flg <- p x
ys <- filterM p xs
return (if flg then x:ys else ys)
filterM executes a monadic action for all elements from a list, yielding elements, for which the monadic action returns True.
A filtering example with an array:
nub' xs = runST $ do
arr <- newArray (1, 9) True :: ST s (STUArray s Int Bool)
let p i = readArray arr i <* writeArray arr i False
filterM p xs
main = print $ nub' [1,2,4,5,4,3,1,8,9,4]
prints [1,2,4,5,3,8,9] as expected.
And a version with the IO monad, which asks what elements to return:
main = filterM p [1,2,4,5] >>= print where
p i = putStrLn ("return " ++ show i ++ "?") *> readLn
E.g.
return 1? -- output
True -- input
return 2?
False
return 4?
False
return 5?
True
[1,5] -- output
And as a final illustration, filterAccum can be defined in terms of filterM:
filterAccum f a xs = evalState (filterM (state . flip f) xs) a
with the StateT monad, that is used under the hood, being just an ordinary datatype.
This example illustrates, that monads not only allow you to abstract computational context and write clean reusable code (due to the composability of monads, as #Carl explains), but also to treat user-defined datatypes and built-in primitives uniformly.
I don't think IO should be seen as a particularly outstanding monad, but it's certainly one of the more astounding ones for beginners, so I'll use it for my explanation.
Naïvely building an IO system for Haskell
The simplest conceivable IO system for a purely-functional language (and in fact the one Haskell started out with) is this:
main₀ :: String -> String
main₀ _ = "Hello World"
With lazyness, that simple signature is enough to actually build interactive terminal programs – very limited, though. Most frustrating is that we can only output text. What if we added some more exciting output possibilities?
data Output = TxtOutput String
| Beep Frequency
main₁ :: String -> [Output]
main₁ _ = [ TxtOutput "Hello World"
-- , Beep 440 -- for debugging
]
cute, but of course a much more realistic “alterative output” would be writing to a file. But then you'd also want some way to read from files. Any chance?
Well, when we take our main₁ program and simply pipe a file to the process (using operating system facilities), we have essentially implemented file-reading. If we could trigger that file-reading from within the Haskell language...
readFile :: Filepath -> (String -> [Output]) -> [Output]
This would use an “interactive program” String->[Output], feed it a string obtained from a file, and yield a non-interactive program that simply executes the given one.
There's one problem here: we don't really have a notion of when the file is read. The [Output] list sure gives a nice order to the outputs, but we don't get an order for when the inputs will be done.
Solution: make input-events also items in the list of things to do.
data IO₀ = TxtOut String
| TxtIn (String -> [Output])
| FileWrite FilePath String
| FileRead FilePath (String -> [Output])
| Beep Double
main₂ :: String -> [IO₀]
main₂ _ = [ FileRead "/dev/null" $ \_ ->
[TxtOutput "Hello World"]
]
Ok, now you may spot an imbalance: you can read a file and make output dependent on it, but you can't use the file contents to decide to e.g. also read another file. Obvious solution: make the result of the input-events also something of type IO, not just Output. That sure includes simple text output, but also allows reading additional files etc..
data IO₁ = TxtOut String
| TxtIn (String -> [IO₁])
| FileWrite FilePath String
| FileRead FilePath (String -> [IO₁])
| Beep Double
main₃ :: String -> [IO₁]
main₃ _ = [ TxtIn $ \_ ->
[TxtOut "Hello World"]
]
That would now actually allow you to express any file operation you might want in a program (though perhaps not with good performance), but it's somewhat overcomplicated:
main₃ yields a whole list of actions. Why don't we simply use the signature :: IO₁, which has this as a special case?
The lists don't really give a reliable overview of program flow anymore: most subsequent computations will only be “announced” as the result of some input operation. So we might as well ditch the list structure, and simply cons a “and then do” to each output operation.
data IO₂ = TxtOut String IO₂
| TxtIn (String -> IO₂)
| Terminate
main₄ :: IO₂
main₄ = TxtIn $ \_ ->
TxtOut "Hello World"
Terminate
Not too bad!
So what has all of this to do with monads?
In practice, you wouldn't want to use plain constructors to define all your programs. There would need to be a good couple of such fundamental constructors, yet for most higher-level stuff we would like to write a function with some nice high-level signature. It turns out most of these would look quite similar: accept some kind of meaningfully-typed value, and yield an IO action as the result.
getTime :: (UTCTime -> IO₂) -> IO₂
randomRIO :: Random r => (r,r) -> (r -> IO₂) -> IO₂
findFile :: RegEx -> (Maybe FilePath -> IO₂) -> IO₂
There's evidently a pattern here, and we'd better write it as
type IO₃ a = (a -> IO₂) -> IO₂ -- If this reminds you of continuation-passing
-- style, you're right.
getTime :: IO₃ UTCTime
randomRIO :: Random r => (r,r) -> IO₃ r
findFile :: RegEx -> IO₃ (Maybe FilePath)
Now that starts to look familiar, but we're still only dealing with thinly-disguised plain functions under the hood, and that's risky: each “value-action” has the responsibility of actually passing on the resulting action of any contained function (else the control flow of the entire program is easily disrupted by one ill-behaved action in the middle). We'd better make that requirement explicit. Well, it turns out those are the monad laws, though I'm not sure we can really formulate them without the standard bind/join operators.
At any rate, we've now reached a formulation of IO that has a proper monad instance:
data IO₄ a = TxtOut String (IO₄ a)
| TxtIn (String -> IO₄ a)
| TerminateWith a
txtOut :: String -> IO₄ ()
txtOut s = TxtOut s $ TerminateWith ()
txtIn :: IO₄ String
txtIn = TxtIn $ TerminateWith
instance Functor IO₄ where
fmap f (TerminateWith a) = TerminateWith $ f a
fmap f (TxtIn g) = TxtIn $ fmap f . g
fmap f (TxtOut s c) = TxtOut s $ fmap f c
instance Applicative IO₄ where
pure = TerminateWith
(<*>) = ap
instance Monad IO₄ where
TerminateWith x >>= f = f x
TxtOut s c >>= f = TxtOut s $ c >>= f
TxtIn g >>= f = TxtIn $ (>>=f) . g
Obviously this is not an efficient implementation of IO, but it's in principle usable.
Monads serve basically to compose functions together in a chain. Period.
Now the way they compose differs across the existing monads, thus resulting in different behaviors (e.g., to simulate mutable state in the state monad).
The confusion about monads is that being so general, i.e., a mechanism to compose functions, they can be used for many things, thus leading people to believe that monads are about state, about IO, etc, when they are only about "composing functions".
Now, one interesting thing about monads, is that the result of the composition is always of type "M a", that is, a value inside an envelope tagged with "M". This feature happens to be really nice to implement, for example, a clear separation between pure from impure code: declare all impure actions as functions of type "IO a" and provide no function, when defining the IO monad, to take out the "a" value from inside the "IO a". The result is that no function can be pure and at the same time take out a value from an "IO a", because there is no way to take such value while staying pure (the function must be inside the "IO" monad to use such value). (NOTE: well, nothing is perfect, so the "IO straitjacket" can be broken using "unsafePerformIO : IO a -> a" thus polluting what was supposed to be a pure function, but this should be used very sparingly and when you really know to be not introducing any impure code with side-effects.
Monads are just a convenient framework for solving a class of recurring problems. First, monads must be functors (i.e. must support mapping without looking at the elements (or their type)), they must also bring a binding (or chaining) operation and a way to create a monadic value from an element type (return). Finally, bind and return must satisfy two equations (left and right identities), also called the monad laws. (Alternatively one could define monads to have a flattening operation instead of binding.)
The list monad is commonly used to deal with non-determinism. The bind operation selects one element of the list (intuitively all of them in parallel worlds), lets the programmer to do some computation with them, and then combines the results in all worlds to single list (by concatenating, or flattening, a nested list). Here is how one would define a permutation function in the monadic framework of Haskell:
perm [e] = [[e]]
perm l = do (leader, index) <- zip l [0 :: Int ..]
let shortened = take index l ++ drop (index + 1) l
trailer <- perm shortened
return (leader : trailer)
Here is an example repl session:
*Main> perm "a"
["a"]
*Main> perm "ab"
["ab","ba"]
*Main> perm ""
[]
*Main> perm "abc"
["abc","acb","bac","bca","cab","cba"]
It should be noted that the list monad is in no way a side effecting computation. A mathematical structure being a monad (i.e. conforming to the above mentioned interfaces and laws) does not imply side effects, though side-effecting phenomena often nicely fit into the monadic framework.
You need monads if you have a type constructor and functions that returns values of that type family. Eventually, you would like to combine these kind of functions together. These are the three key elements to answer why.
Let me elaborate. You have Int, String and Real and functions of type Int -> String, String -> Real and so on. You can combine these functions easily, ending with Int -> Real. Life is good.
Then, one day, you need to create a new family of types. It could be because you need to consider the possibility of returning no value (Maybe), returning an error (Either), multiple results (List) and so on.
Notice that Maybe is a type constructor. It takes a type, like Int and returns a new type Maybe Int. First thing to remember, no type constructor, no monad.
Of course, you want to use your type constructor in your code, and soon you end with functions like Int -> Maybe String and String -> Maybe Float. Now, you can't easily combine your functions. Life is not good anymore.
And here's when monads come to the rescue. They allow you to combine that kind of functions again. You just need to change the composition . for >==.
Why do we need monadic types?
Since it was the quandary of I/O and its observable effects in nonstrict languages like Haskell that brought the monadic interface to such prominence:
[...] monads are used to address the more general problem of computations (involving state, input/output, backtracking, ...) returning values: they do not solve any input/output-problems directly but rather provide an elegant and flexible abstraction of many solutions to related problems. [...] For instance, no less than three different input/output-schemes are used to solve these basic problems in Imperative functional programming, the paper which originally proposed `a new model, based on monads, for performing input/output in a non-strict, purely functional language'. [...]
[Such] input/output-schemes merely provide frameworks in which side-effecting operations can safely be used with a guaranteed order of execution and without affecting the properties of the purely functional parts of the language.
Claus Reinke (pages 96-97 of 210).
(emphasis by me.)
[...] When we write effectful code – monads or no monads – we have to constantly keep in mind the context of expressions we pass around.
The fact that monadic code ‘desugars’ (is implementable in terms of) side-effect-free code is irrelevant. When we use monadic notation, we program within that notation – without considering what this notation desugars into. Thinking of the desugared code breaks the monadic abstraction. A side-effect-free, applicative code is normally compiled to (that is, desugars into) C or machine code. If the desugaring argument has any force, it may be applied just as well to the applicative code, leading to the conclusion that it all boils down to the machine code and hence all programming is imperative.
[...] From the personal experience, I have noticed that the mistakes I make when writing monadic code are exactly the mistakes I made when programming in C. Actually, monadic mistakes tend to be worse, because monadic notation (compared to that of a typical imperative language) is ungainly and obscuring.
Oleg Kiselyov (page 21 of 26).
The most difficult construct for students to understand is the monad. I introduce IO without mentioning monads.
Olaf Chitil.
More generally:
Still, today, over 25 years after the introduction of the concept of monads to the world of functional programming, beginning functional programmers struggle to grasp the concept of monads. This struggle is exemplified by the numerous blog posts about the effort of trying to learn about monads. From our own experience we notice that even at university level, bachelor level students often struggle to comprehend monads and consistently score poorly on monad-related exam questions.
Considering that the concept of monads is not likely to disappear from the functional programming landscape any time soon, it is vital that we, as the functional programming community, somehow overcome the problems novices encounter when first studying monads.
Tim Steenvoorden, Jurriën Stutterheim, Erik Barendsen and Rinus Plasmeijer.
If only there was another way to specify "a guaranteed order of execution" in Haskell, while keeping the ability to separate regular Haskell definitions from those involved in I/O (and its observable effects) - translating this variation of Philip Wadler's echo:
val echoML : unit -> unit
fun echoML () = let val c = getcML () in
if c = #"\n" then
()
else
let val _ = putcML c in
echoML ()
end
fun putcML c = TextIO.output1(TextIO.stdOut,c);
fun getcML () = valOf(TextIO.input1(TextIO.stdIn));
...could then be as simple as:
echo :: OI -> ()
echo u = let !(u1:u2:u3:_) = partsOI u in
let !c = getChar u1 in
if c == '\n' then
()
else
let !_ = putChar c u2 in
echo u3
where:
data OI -- abstract
foreign import ccall "primPartOI" partOI :: OI -> (OI, OI)
⋮
foreign import ccall "primGetCharOI" getChar :: OI -> Char
foreign import ccall "primPutCharOI" putChar :: Char -> OI -> ()
⋮
and:
partsOI :: OI -> [OI]
partsOI u = let !(u1, u2) = partOI u in u1 : partsOI u2
How would this work? At run-time, Main.main receives an initial OI pseudo-data value as an argument:
module Main(main) where
main :: OI -> ()
⋮
...from which other OI values are produced, using partOI or partsOI. All you have to do is ensure each new OI value is used at most once, in each call to an OI-based definition, foreign or otherwise. In return, you get back a plain ordinary result - it isn't e.g. paired with some odd abstract state, or requires the use of a callback continuation, etc.
Using OI, instead of the unit type () like Standard ML does, means we can avoid always having to use the monadic interface:
Once you're in the IO monad, you're stuck there forever, and are reduced to Algol-style imperative programming.
Robert Harper.
But if you really do need it:
type IO a = OI -> a
unitIO :: a -> IO a
unitIO x = \ u -> let !_ = partOI u in x
bindIO :: IO a -> (a -> IO b) -> IO b
bindIO m k = \ u -> let !(u1, u2) = partOI u in
let !x = m u1 in
let !y = k x u2 in
y
⋮
So, monadic types aren't always needed - there are other interfaces out there:
LML had a fully fledged implementation of oracles running of a multi-processor (a Sequent Symmetry) back in ca 1989. The description in the Fudgets thesis refers to this implementation. It was fairly pleasant to work with and quite practical.
[...]
These days everything is done with monads so other solutions are sometimes forgotten.
Lennart Augustsson (2006).
Wait a moment: since it so closely resembles Standard ML's direct use of effects, is this approach and its use of pseudo-data referentially transparent?
Absolutely - just find a suitable definition of "referential transparency"; there's plenty to choose from...

Resources