Why is ProtoContractAttribute not valid on a struct? - attributes

Why can't ProtoContract be applied to a custom structure? According to this question and the associate answer and code, structures can obviously be serialized by protobuf-net by using DataContract instead. Are there any disadvantages to using this workaround? ProtoContract says it can only be applied to classes and enums; is this an outdated restriction from v1? I'm using the most recent release (r470).

In v1 it is not available on struct, which isn't unreasonable since v1 did not support structs. It should work in r470 though; if it isn't working, you probably aren't actually using r470! Here's the code:
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct |
AttributeTargets.Enum | AttributeTargets.Interface,
AllowMultiple = false, Inherited = true)]
public sealed class ProtoContractAttribute : Attribute
{ ... }
I'm pretty sure there are tests that use this, and I know for a fact that I did plenty of "day job" work this week serializing structs in this way with v2.
Please check you are using the right dll.

Related

Azure Functions .Net 5: Is it possible to implement POCO binding somehow?

When moving my functions to .net5 I faced the fact that POCO binding that worked fine with 3.1 is not applicable with .net 5 anymore for some reason. They say it will be implemented at some point maybe, but for the certain reasons I need it now. Tried to find some hacky way to implement this, but failed. The best thought I had was to implement explicit operator in my DTO object which will cast HttpRequestData to it's type, but the problem is that HttpRequestData is an abstract type, and it's concrete implementation type is internal. After that I tried to cast the input parameter to HttpRequestData in middleware with reflection, but parameters are stored in IReadOnlyDictionary which is immutable. So I ran out of ideas now. Maybe someone found workaround to this and can kindly share, would be much appreciated.
I suppose you're using the "dotnet-isolated" mode (only way to run on .NET 5).
I'm trying to find a more elegant solution to this as well.
Meanwhile, what I did was to deserialize the data myself, inside the function.
var body = await new StreamReader(request.Body).ReadToEndAsync();
var myobject = JsonSerializer.Deserialize<MyPocoClass>(json);
I would really prefer if the runtime did it by itself, but I couln't find a way yet. I read somewhere that it is possible to create our own binding code, but I haven't tried it.
I noticed that I could bind to individual properties of the json payload, but not to an object...
I hope this arrives in Azure Functions v4 + .NET6, since it is right around the corner.

Why is the usage of util.inherits() discouraged?

According to the Node.js documentation :
Note: usage of util.inherits() is discouraged. Please use the ES6 class and extends keywords to get language level inheritance support. Also note that the two styles are semantically incompatible.
https://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor
The reason why util.inherits is discouraged, is because changing the prototype of an object should be avoided, as most JavaScript engines look for optimisations assuming that the prototype will not change. When it does, this may lead to bad performance.
util.inherits relies on Object.setPrototypeOf to make this change, and the MDN documentation of that native method has this warning:
Warning: Changing the [[Prototype]] of an object is, by the nature of how modern JavaScript engines optimize property accesses, currently a very slow operation in every browser and JavaScript engine. In addition, the effects of altering inheritance are subtle and far-flung, and are not limited to the time spent in the Object.setPrototypeOf(...) statement, but may extend to any code that has access to any object whose [[Prototype]] has been altered.
Because this feature is a part of the language, it is still the burden on engine developers to implement that feature performantly (ideally). Until engine developers address this issue, if you are concerned about performance, you should avoid setting the [[Prototype]] of an object. Instead, create a new object with the desired [[Prototype]] using Object.create().
As the quote says, you should use the ES6 class and extends keywords to get language level inheritance support instead of utils.inherits and that's exactly the reason for which to use it is discouraged: there exist better alternatives that are part of the core language, that's all.
util.inherits comes from the time when those utils were not part of the language and it requires you a lot of boilerplate to define your own inheritance tools.
Nowadays the language offers a valid alternative and it doesn't make sense anymore to use the ones provided with the library itself. Of course, this is true as long as you use plan to use ES6 - otherwise ignore that note and continue to use utils.inherits.
To reply to your comment:
How is util.inherits() more complicated?
It's not a matter of being more or less complicated. To use a core language feature should be ever your preferred way over using a library specific alternative for obvious reasons.
util.inherits() got deprecated in the new version of node so need to use the ES6 class and extends keywords to get language level inheritance support instead of utils.inherits.
below example which I gave below helps you to understand more clearly :
"use strict";
class Person {
constructor(fName, lName) {
this.firstName = fName;
this.lastName = lName;
}
greet() {
console.log("in a class fn..", this.firstName, "+ ", this.lastName);
}
}
class PoliceMan extends Person {
constructor(burgler) {
super("basava", "sk");
this.burgler = burgler;
}
}
let policeObj = new PoliceMan();
policeObj.greet();
Output : in a class fn.. basava + sk
Here we can see Person class is inherited by PoliceMan class, so that PoliceMan obj can access the properties of Person class by calling super(); in a constructor
Hope this will work as util.inherits();
Happy Coding !!!

Intellij idea gdsl. Add constructor to the class. Documentation for GDSL

I have an annotation which adds some methods and default constructor to annotated class.
I have managed to create a gdsl, to enable autocompletion in idea for methods, but I'm stuck with constructor and documentation is very poor.
Does anyone have any ideas, how to do this?
Maybe I could find a solution, in existing gdsl, but I can't remember any Transformation, related to constructors. Maybe you can remind me of any of them.
def objectContext = context(ctype: "java.lang.Object")
contributor(objectContext) {
if (hasAnnotation("com.xseagullx.SomeAnnotation")) {
// Here I want to add constructor's declaration(with empty arg's)
// …
// And then my methods.
method name: 'someMethod', type: 'void', params: [:]
}
}
EDITED: OK, if it's as #jasp say, and there is no DSL construct for declaring Constructors, I'm still asking for a good documentation sources, other than JB's confluence page. Tutorials and other sources. I'm familiar with embedded dsl's for groovy, grails and gradle.
Need smth. more structured, if it's possible.
All function invocations inside of GroovyDSL are just calls to wrappers around internal IDEA's Program Structure Interface (PCI). However it doesn't cover all of PCI's abilities, including default constructors functionality I believe. One of an evidence for that is singletonTransform.gdsl, which is bundled into IDEA from 9 version and describes #Singleton AST transformation. Here is it's code:
contributor(context()) {
if (classType?.hasAnnotation("groovy.lang.Singleton")) {
property name: "instance",
type: classType?.getQualifiedName() ?: "java.lang.Object",
isStatic: true
}
}
As you can see it doesn't change a constructor and it's visibility, so IDEA will autocomplete this invalid code:
#Singleton class Foo {}
def foo = new Foo()
Futhermore GDSL that describes the semantics of GroovyDSL (which is actually the part of /plugins/groovy/resources/standardDsls/metaDsl.gdsl of IDEA sources) doesn't provide any ability for describing of constructors.
In this case I suggest you use newify transformation which allows you to describe targetClass.name method returning created instance.
I know this is a bit old, but I found myself looking for something similar.
The DSL you are looking for is
method params: [:], constructor: true although I don't understand why you'd need it; if a class doesn't declare any constructors doesn't IDEA always suggest the default one?

Metaprogramming: adding equals(Object o) and hashCode() to a library class

I have a library of domain objects which need to be used in the project, however we've found a couple of the classes haven't got an equals or hashCode method implemented.
I'm looking for the simplest (and Grooviest) way to add those methods. Obviously I could create a subclass which only adds the methods, but this would be confusing for developers used to the library and would mean we'd have to refactor existing code.
It is not possible to get the source changed (currently).
If I could edit the class I would just use the #EqualsAndHashCode annotation to carry out an AST transformation (at compile time?), but I can't find a way to instruct the compiler to carry out the transformation on a class which I can't directly annotate.
I'm currently trying to work up an example using the ExpandoMetaClass, so I'd do something like:
MySuperClass.metaClass.hashCode = { ->
// Add dynamic hashCode calculation bits here
}
MySuperClass.metaClass.equals = { ->
// Add dynamic hashCode calculation bits here
}
I don't really want to hand-code the hashCode/equals methods for each class, so I'm looking for something dyamic (like #EqualsAndHashCode) which will work with this.
Am I on the right track? Is there a groovier way?
AST Transforms are only applied at compile time, so you'll get no help from the likes of #EqualsAndHashCode. MetaClass hacks are going to be your only option. That said, there are more-elegant ways to impose MetaClass behavior.
Shameless Self Plug I did a talk about this kind of stuff last year at SpringOne 2GX: http://www.infoq.com/presentations/groovy-app-architecture
In short, you might find benefit in creating extensions (unless you're in Grails) - http://mrhaki.blogspot.com/2013/01/groovy-goodness-adding-extra-methods.html, or by explicitly adding mixins - http://groovy.codehaus.org/Runtime+mixins ... But in general, these are just cleaner ways to do the exact same thing you're already doing.

ServiceStack: RESTful Resource Versioning

I've taken a read to the Advantages of message based web services article and am wondering if there is there a recommended style/practice to versioning Restful resources in ServiceStack? The different versions could render different responses or have different input parameters in the Request DTO.
I'm leaning toward a URL type versioning (i.e /v1/movies/{Id}), but I have seen other practices that set the version in the HTTP headers (i.e Content-Type: application/vnd.company.myapp-v2).
I'm hoping a way that works with the metadata page but not so much a requirement as I've noticed simply using folder structure/ namespacing works fine when rendering routes.
For example (this doesn't render right in the metadata page but performs properly if you know the direct route/url)
/v1/movies/{id}
/v1.1/movies/{id}
Code
namespace Samples.Movies.Operations.v1_1
{
[Route("/v1.1/Movies", "GET")]
public class Movies
{
...
}
}
namespace Samples.Movies.Operations.v1
{
[Route("/v1/Movies", "GET")]
public class Movies
{
...
}
}
and corresponding services...
public class MovieService: ServiceBase<Samples.Movies.Operations.v1.Movies>
{
protected override object Run(Samples.Movies.Operations.v1.Movies request)
{
...
}
}
public class MovieService: ServiceBase<Samples.Movies.Operations.v1_1.Movies>
{
protected override object Run(Samples.Movies.Operations.v1_1.Movies request)
{
...
}
}
Try to evolve (not re-implement) existing services
For versioning, you are going to be in for a world of hurt if you try to maintain different static types for different version endpoints. We initially started down this route but as soon as you start to support your first version the development effort to maintain multiple versions of the same service explodes as you will need to either maintain manual mapping of different types which easily leaks out into having to maintain multiple parallel implementations, each coupled to a different versions type - a massive violation of DRY. This is less of an issue for dynamic languages where the same models can easily be re-used by different versions.
Take advantage of built-in versioning in serializers
My recommendation is not to explicitly version but take advantage of the versioning capabilities inside the serialization formats.
E.g: you generally don't need to worry about versioning with JSON clients as the versioning capabilities of the JSON and JSV Serializers are much more resilient.
Enhance your existing services defensively
With XML and DataContract's you can freely add and remove fields without making a breaking change. If you add IExtensibleDataObject to your response DTO's you also have a potential to access data that's not defined on the DTO. My approach to versioning is to program defensively so not to introduce a breaking change, you can verify this is the case with Integration tests using old DTOs. Here are some tips I follow:
Never change the type of an existing property - If you need it to be a different type add another property and use the old/existing one to determine the version
Program defensively realize what properties don't exist with older clients so don't make them mandatory.
Keep a single global namespace (only relevant for XML/SOAP endpoints)
I do this by using the [assembly] attribute in the AssemblyInfo.cs of each of your DTO projects:
[assembly: ContractNamespace("http://schemas.servicestack.net/types",
ClrNamespace = "MyServiceModel.DtoTypes")]
The assembly attribute saves you from manually specifying explicit namespaces on each DTO, i.e:
namespace MyServiceModel.DtoTypes {
[DataContract(Namespace="http://schemas.servicestack.net/types")]
public class Foo { .. }
}
If you want to use a different XML namespace than the default above you need to register it with:
SetConfig(new EndpointHostConfig {
WsdlServiceNamespace = "http://schemas.my.org/types"
});
Embedding Versioning in DTOs
Most of the time, if you program defensively and evolve your services gracefully you wont need to know exactly what version a specific client is using as you can infer it from the data that is populated. But in the rare cases your services needs to tweak the behavior based on the specific version of the client, you can embed version information in your DTOs.
With the first release of your DTOs you publish, you can happily create them without any thought of versioning.
class Foo {
string Name;
}
But maybe for some reason the Form/UI was changed and you no longer wanted the Client to use the ambiguous Name variable and you also wanted to track the specific version the client was using:
class Foo {
Foo() {
Version = 1;
}
int Version;
string Name;
string DisplayName;
int Age;
}
Later it was discussed in a Team meeting, DisplayName wasn't good enough and you should split them out into different fields:
class Foo {
Foo() {
Version = 2;
}
int Version;
string Name;
string DisplayName;
string FirstName;
string LastName;
DateTime? DateOfBirth;
}
So the current state is that you have 3 different client versions out, with existing calls that look like:
v1 Release:
client.Post(new Foo { Name = "Foo Bar" });
v2 Release:
client.Post(new Foo { Name="Bar", DisplayName="Foo Bar", Age=18 });
v3 Release:
client.Post(new Foo { FirstName = "Foo", LastName = "Bar",
DateOfBirth = new DateTime(1994, 01, 01) });
You can continue to handle these different versions in the same implementation (which will be using the latest v3 version of the DTOs) e.g:
class FooService : Service {
public object Post(Foo request) {
//v1:
request.Version == 0
request.Name == "Foo"
request.DisplayName == null
request.Age = 0
request.DateOfBirth = null
//v2:
request.Version == 2
request.Name == null
request.DisplayName == "Foo Bar"
request.Age = 18
request.DateOfBirth = null
//v3:
request.Version == 3
request.Name == null
request.DisplayName == null
request.FirstName == "Foo"
request.LastName == "Bar"
request.Age = 0
request.DateOfBirth = new DateTime(1994, 01, 01)
}
}
Framing the Problem
The API is the part of your system that exposes its expression. It defines the concepts and the semantics of communicating in your domain. The problem comes when you want to change what can be expressed or how it can be expressed.
There can be differences in both the method of expression and what is being expressed. The first problem tends to be differences in tokens (first and last name instead of name). The second problem is expressing different things (the ability to rename oneself).
A long-term versioning solution will need to solve both of these challenges.
Evolving an API
Evolving a service by changing the resource types is a type of implicit versioning. It uses the construction of the object to determine behavior. Its works best when there are only minor changes to the method of expression (like the names). It does not work well for more complex changes to the method of expression or changes to the change of expressiveness. Code tends to be scatter throughout.
Specific Versioning
When changes become more complex it is important to keep the logic for each version separate. Even in mythz example, he segregated the code for each version. However, the code is still mixed together in the same methods. It is very easy for code for the different versions to start collapsing on each other and it is likely to spread out. Getting rid of support for a previous version can be difficult.
Additionally, you will need to keep your old code in sync to any changes in its dependencies. If a database changes, the code supporting the old model will also need to change.
A Better Way
The best way I've found is to tackle the expression problem directly. Each time a new version of the API is released, it will be implemented on top of the new layer. This is generally easy because changes are small.
It really shines in two ways: first all the code to handle the mapping is in one spot so it is easy to understand or remove later and second it doesn't require maintenance as new APIs are developed (the Russian doll model).
The problem is when the new API is less expressive than the old API. This is a problem that will need to be solved no matter what the solution is for keeping the old version around. It just becomes clear that there is a problem and what the solution for that problem is.
The example from mythz's example in this style is:
namespace APIv3 {
class FooService : RestServiceBase<Foo> {
public object OnPost(Foo request) {
var data = repository.getData()
request.FirstName == data.firstName
request.LastName == data.lastName
request.DateOfBirth = data.dateOfBirth
}
}
}
namespace APIv2 {
class FooService : RestServiceBase<Foo> {
public object OnPost(Foo request) {
var v3Request = APIv3.FooService.OnPost(request)
request.DisplayName == v3Request.FirstName + " " + v3Request.LastName
request.Age = (new DateTime() - v3Request.DateOfBirth).years
}
}
}
namespace APIv1 {
class FooService : RestServiceBase<Foo> {
public object OnPost(Foo request) {
var v2Request = APIv2.FooService.OnPost(request)
request.Name == v2Request.DisplayName
}
}
}
Each exposed object is clear. The same mapping code still needs to be written in both styles, but in the separated style, only the mapping relevant to a type needs to be written. There is no need to explicitly map code that doesn't apply (which is just another potential source of error). The dependency of previous APIs is static when you add future APIs or change the dependency of the API layer. For example, if the data source changes then only the most recent API (version 3) needs to change in this style. In the combined style, you would need to code the changes for each of the APIs supported.
One concern in the comments was the addition of types to the code base. This is not a problem because these types are exposed externally. Providing the types explicitly in the code base makes them easy to discover and isolate in testing. It is much better for maintainability to be clear. Another benefit is that this method does not produce additional logic, but only adds additional types.
I am also trying to come with a solution for this and was thinking of doing something like the below. (Based on a lot of Googlling and StackOverflow querying so this is built on the shoulders of many others.)
First up, I don’t want to debate if the version should be in the URI or Request Header. There are pros/cons for both approaches so I think each of us need to use what meets our requirements best.
This is about how to design/architecture the Java Message Objects and the Resource Implementation classes.
So let’s get to it.
I would approach this in two steps. Minor Changes (e.g. 1.0 to 1.1) and Major Changes (e.g 1.1 to 2.0)
Approach for minor changes
So let’s say we go by the same example classes used by #mythz
Initially we have
class Foo { string Name; }
We provide access to this resource as /V1.0/fooresource/{id}
In my use case, I use JAX-RS,
#Path("/{versionid}/fooresource")
public class FooResource {
#GET
#Path( "/{id}" )
public Foo getFoo (#PathParam("versionid") String versionid, (#PathParam("id") String fooId)
{
Foo foo = new Foo();
//setters, load data from persistence, handle business logic etc
Return foo;
}
}
Now let’s say we add 2 additional properties to Foo.
class Foo {
string Name;
string DisplayName;
int Age;
}
What I do at this point is annotate the properties with a #Version annotation
class Foo {
#Version(“V1.0")string Name;
#Version(“V1.1")string DisplayName;
#Version(“V1.1")int Age;
}
Then I have a response filter that will based on the requested version, return back to the user only the properties that match that version. Note that for convenience, if there are properties that should be returned for all versions, then you just don’t annotate it and the filter will return it irrespective of the requested version
This is sort of like a mediation layer. What I have explained is a simplistic version and it can get very complicated but hope you get the idea.
Approach for Major Version
Now this can get quite complicated when there is a lot of changes been done from one version to another. That is when we need to move to 2nd option.
Option 2 is essentially to branch off the codebase and then do the changes on that code base and host both versions on different contexts. At this point we might have to refactor the code base a bit to remove version mediation complexity introduced in Approach one (i.e. make the code cleaner) This might mainly be in the filters.
Note that this is just want I am thinking and haven’t implemented it as yet and wonder if this is a good idea.
Also I was wondering if there are good mediation engines/ESB’s that could do this type of transformation without having to use filters but haven’t seen any that is as simple as using a filter. Maybe I haven’t searched enough.
Interested in knowing thoughts of others and if this solution will address the original question.

Resources