Does thread has limit to use the network bandwidth? - multithreading

I heard there is some limitation for a single thread to use network bandwidth? if this is true, is this the reason to use multithread programming to achieve the maximum bandwidth?

The reason to use multithreading for network tasks is that one thread might be waiting for a response from the remote server. Creating multiple threads can help you having at least one thread downloading from different requests at one time.

The usual reason for issuing more than one network request at a time, (either implicitly with user threads, or implicitly with kernel threads and asynchronous callbacks), is that the effects of network latency can be be minimised. Latency can have a large effect. A web connection, for example, needs a DNS lookup first, then a TCP 3-way connect, then some data transfer and finally a 4-way close. If the page size is small and the bandwidth large compared with the latency, most time is spent waiting for protocol exchanges.
So, if you are crawling multiple servers, a multithreaded design is hugely faster even on a single-core machine. If you are downloading a single video file from one server, not so much..

Related

What is the benifit using netty4 NIO in the client side comparing to the one thread-per-connection blocking IO?

I see from the server side, the benefit of NIO is the capability to manage multiple network connections with fewer thread comparing to the comparing to one thread per connection blocking IO.
However, if I have a IO client which connects to thousand of servers at the same time, can I just have similar approach to manage these connections IO using fewer threads. I tried the approach in Netty 4 multiple client and found it spawn a "Reader" thread for each channel it created.
So, my questions are:
1) what are the benefits using netty/NIO in the client side?
2) is it possible to manage multiple connections with fewer threads in the client side?
Thanks!
I have uploaded the code samples in github: https://github.com/hippoz/ogop-lseb
The sample server/client class is moc.ogop.ahsp.demo.nio.MultipleConnectionNioMain and moc.ogop.ahsp.demo.nio.NettyNioServerMain
Having lots of threads creates a context-switch problem in the kernel where lots more memory is being loaded and unloaded from each core as the kernel tries to reschedule the threads across the cores.
The benefit of NIO anywhere is performance. Thats pretty much the only reason we use it. Using Blocking IO is MUCH more simple. Using the worker model and NIO you can limit the number of threads (and potential computational time) the process uses. So if you have two workers and they go bonkers using 100% cpu time the whole system won't go to a crawl because you have 2-4 more cores available.
Have fun!
https://en.wikipedia.org/wiki/Context_switch
Why should I use non-blocking or blocking sockets?

Seeking tutorials and information on load-balancing between threads

I know the term "Load Balancing" can be very broad, but the subject I'm trying to explain is more specific, and I don't know the proper terminology. What I'm building is a set of Server/Client applications. The server needs to be able to handle a massive amount of data transfer, as well as client connections, so I started looking into multi-threading.
There's essentially 3 ways I can see implementing any sort of threading for the server...
One thread handling all requests (defeats the purpose of a thread if 500 clients are logged in)
One thread per user (which is risky to create 1 thread for each of the 500 clients)
Pool of threads which divide the work evenly for any number of clients (What I'm seeking)
The third one is what I'd like to know. This consists of a setup like this:
Maximum 250 threads running at once
500 clients will not create 500 threads, but share the 250
A Queue of requests will be pending to be passed into a thread
A thread is not tied down to a client, and vice-versa
Server decides which thread to send a request to based on activity (load balance)
I'm currently not seeking any code quite yet, but information on how a setup like this works, and preferably a tutorial to accomplish this in Delphi (XE2). Even a proper word or name to put on this subject would be sufficient so I can do the searching myself.
EDIT
I found it necessary to explain a little about what this will be used for. I will be streaming both commands and images, there will be a double-socket setup where there's one "Main Command Socket" and another "Add-on Image Streaming Socket". So really one connection is 2 socket connections.
Each connection to the server's main socket creates (or re-uses) an object representing all the data needed for that connection, including threads, images, settings, etc. For every connection to the main socket, a streaming socket is also connected. It's not always streaming images, but the command socket is always ready.
The point is that I already have a threading mechanism in my current setup (1 thread per session object) and I'd like to shift that over to a pool-like multithreading environment. The two connections together require a higher-level control over these threads, and I can't rely on something like Indy to keep these synchronized, I'd rather know how things are working than to learn to trust something else to do the work for me.
IOCP server. It's the only high-performance solution. It's essentially asynchronous in user mode, ('overlapped I/O in M$-speak), a pool of threads issue WSARecv, WSASend, AcceptEx calls and then all wait on an IOCP queue for completion records. When something useful happens, a kernel threadpool performs the actual I/O and then queues up the completion records.
You need at least a buffer class and socket class, (and probably others for high-performance - objectPool and pooledObject classes so you can make socket and buffer pools).
500 threads may not be an issue on a server class computer. A blocking TCP thread doesn't do much while it's waiting for the server to respond.
There's nothing stopping you from creating some type of work queue on the server side, served by a limited size pool of threads. A simple thread-safe TList works great as a queue, and you can easily put a message handler on each server thread for notifications.
Still, at some point you may have too much work, or too many threads, for the server to handle. This is usually handled by adding another application server.
To ensure scalability, code for the idea of multiple servers, and you can keep scaling by adding hardware.
There may be some reason to limit the number of actual work threads, such as limiting lock contention on a database, or something similar, however, in general, you distribute work by adding threads, and let the hardware (CPU, redirector, switch, NAS, etc.) schedule the load.
Your implementation is completely tied to the communications components you use. If you use Indy, or anything based on Indy, it is one thread per connection - period! There is no way to change this. Indy will scale to 100's of connections, but not 1000's. Your best hope to use thread pools with your communications components is IOCP, but here your choices are limited by the lack of third-party components. I have done all the investigation before and you can see my question at stackoverflow.com/questions/7150093/scalable-delphi-tcp-server-implementation.
I have a fully working distributed development framework (threading and comms) that has been used in production for over 3 years now across more than a half-dozen separate systems and basically covers everything you have asked so far. The code can be found on the web as well.

New thread per client connection in socket server?

I am trying to optimize multiple connections per time to a TCP socket server.
Is it considered good practice, or even rational to initiate a new thread in the listening server every time I receive a connection request?
At what time should I begin to worry about a server based on this infrastructure? What is the maximum no of background threads I can work, until it doesn't make any sense anymore?
Platform is C#, framework is Mono, target OS is CentOS, RAM is 2.4G, server is on the clouds, and I'm expecting about 200 connection requests per second.
No, you shouldn't have one thread per connection. Instead, you should be using the asynchronous methods (BeginAccept/EndAccept, BeginSend/EndSend, etc). These will make much more efficient use of system resources.
In particular, every thread you create adds overhead in terms of context switches, stack space, cache misses and so on. Linux is better at managing this stuff than Windows, for example, but that shouldn't be an excuse to give you free reign to create as many threads as you like ;)

How to determine the best number of threads in Tomcat?

How does one determine the best number of maxSpare, minSpare and maxThreads, acceptCount etc in Tomcat? Are there existing best practices?
I do understand this needs to be based on hardware (e.g. per core) and can only be a basis for further performance testing and optimization on specific hardware.
the "how many threads problem" is quite a big and complicated issue, and cannot be answered with a simple rule of thumb.
Considering how many cores you have is useful for multi threaded applications that tend to consume a lot of CPU, like number crunching and the like. This is rarely the case for a web-app, which is usually hogged not by CPU but by other factors.
One common limitation is lag between you and other external systems, most notably your DB. Each time a request arrive, it will probably query the database a number of times, which means streaming some bytes over a JDBC connection, then waiting for those bytes to arrive to the database (even is it's on localhost there is still a small lag), then waiting for the DB to consider our request, then wait for the database to process it (the database itself will be waiting for the disk to seek to a certain region) etc...
During all this time, the thread is idle, so another thread could easily use that CPU resources to do something useful. It's quite common to see 40% to 80% of time spent in waiting on DB response.
The same happens also on the other side of the connection. While a thread of yours is writing its output to the browser, the speed of the CLIENT connection may keep your thread idle waiting for the browser to ack that a certain packet has been received. (This was quite an issue some years ago, recent kernels and JVMs use larger buffers to prevent your threads for idling that way, however a reverse proxy in front of you web application server, even simply an httpd, can be really useful to avoid people with bad internet connection to act as DDOS attacks :) )
Considering these factors, the number of threads should be usually much more than the cores you have. Even on a simple dual or quad core server, you should configure a few dozens threads at least.
So, what is limiting the number of threads you can configure?
First of all, each thread (used to) consume a lot of resources. Each thread have a stack, which consumes RAM. Moreover, each Thread will actually allocate stuff on the heap to do its work, consuming again RAM, and the act of switching between threads (context switching) is quite heavy for the JVM/OS kernel.
This makes it hard to run a server with thousands of threads "smoothly".
Given this picture, there are a number of techniques (mostly: try, fail, tune, try again) to determine more or less how many threads you app will need:
1) Try to understand where your threads spend time. There are a number of good tools, but even jvisualvm profiler can be a great tool, or a tracing aspect that produces summary timing stats. The more time they spend waiting for something external, the more you can spawn more threads to use CPU during idle times.
2) Determine your RAM usage. Given that the JVM will use a certain amount of memory (most notably the permgen space, usually up to a hundred megabytes, again jvisualvm will tell) independently of how many threads you use, try running with one thread and then with ten and then with one hundred, while stressing the app with jmeter or whatever, and see how heap usage will grow. That can pose a hard limit.
3) Try to determine a target. Each user request needs a thread to be handled. If your average response time is 200ms per "get" (it would be better not to consider loading of images, CSS and other static resources), then each thread is able to serve 4/5 pages per second. If each user is expected to "click" each 3/4 seconds (depends, is it a browser game or a site with a lot of long texts?), then one thread will "serve 20 concurrent users", whatever it means. If in the peak hour you have 500 single users hitting your site in 1 minute, then you need enough threads to handle that.
4) Crash test the high limit. Use jmeter, configure a server with a lot of threads on a spare virtual machine, and see how response time will get worse when you go over a certain limit. More than hardware, the thread implementation of the underlying OS is important here, but no matter what it will hit a point where the CPU spend more time trying to figure out which thread to run than actually running it, and that numer is not so incredibly high.
5) Consider how threads will impact other components. Each thread will probably use one (or maybe more than one) connection to the database, is the database able to handle 50/100/500 concurrent connections? Even if you are using a sharded cluster of nosql servers, does the server farm offer enough bandwidth between those machines? What else will run on the same machine with the web-app server? Anache httpd? squid? the database itself? a local caching proxy to the database like mongos or memcached?
I've seen systems in production with only 4 threads + 4 spare threads, cause the work done by that server was merely to resize images, so it was nearly 100% CPU intensive, and others configured on more or less the same hardware with a couple of hundreds threads, cause the webapp was doing a lot of SOAP calls to external systems and spending most of its time waiting for answers.
Oce you've determined the approx. minimum and maximum threads optimal for you webapp, then I usually configure it this way :
1) Based on the constraints on RAM, other external resources and experiments on context switching, there is an absolute maximum which must not be reached. So, use maxThreads to limit it to about half or 3/4 of that number.
2) If the application is reasonably fast (for example, it exposes REST web services that usually send a response is a few milliseconds), then you can configure a large acceptCount, up to the same number of maxThreads. If you have a load balancer in front of your web application server, set a small acceptCount, it's better for the load balancer to see unaccepted requests and switch to another server than putting users on hold on an already busy one.
3) Since starting a thread is (still) considered a heavy operation, use minSpareThreads to have a few threads ready when peak hours arrive. This again depends on the kind of load you are expecting. It's even reasonable to have minSpareThreads, maxSpareThreads and maxThreads setup so that an exact number of threads is always ready, never reclaimed, and performances are predictable. If you are running tomcat on a dedicated machine, you can raise minSpareThreads and maxSpareThreads without any danger of hogging other processes, otherwise tune them down cause threads are resources shared with the rest of the processes running on most OS.

How to most efficently handle large numbers of file descriptors?

There appear to be several options available to programs that handle large numbers of socket connections (such as web services, p2p systems, etc).
Spawn a separate thread to handle I/O for each socket.
Use the select system call to multiplex the I/O into a single thread.
Use the poll system call to multiplex the I/O (replacing the select).
Use the epoll system calls to avoid having to repeatedly send sockets fd's through the user/system boundaries.
Spawn a number of I/O threads that each multiplex a relatively small set of the total number of connections using the poll API.
As per #5 except using the epoll API to create a separate epoll object for each independent I/O thread.
On a multicore CPU I would expect that #5 or #6 would have the best performance, but I don't have any hard data backing this up. Searching the web turned up this page describing the experiences of the author testing approaches #2, #3 and #4 above. Unfortunately this web page appears to be around 7 years old with no obvious recent updates to be found.
So my question is which of these approaches have people found to be most efficient and/or is there another approach that works better than any of those listed above? References to real life graphs, whitepapers and/or web available writeups will be appreciated.
Speaking with my experience with running large IRC servers, we used to use select() and poll() (because epoll()/kqueue() weren't available). At around about 700 simultaneous clients, the server would be using 100% of a CPU (the irc server wasn't multithreaded). However, interestingly the server would still perform well. At around 4,000 clients, the server would start to lag.
The reason for this was that at around 700ish clients, when we'd get back to select() there would be one client available for processing. The for() loops scanning to find out which client it was would be eating up most of the CPU. As we got more clients, we'd start getting more and more clients needing processing in each call to select(), so we'd become more efficient.
Moving to epoll()/kqueue(), similar spec'd machines would trivially deal with 10,000 clients, with some (admitidly more powerful machines, but still machines that would be considered tiny by todays standards), have held 30,000 clients without breaking a sweat.
Experiments I've seen with SIGIO seem to suggest it works well for applications where latency is extremely important, where there are only a few active clients doing very little individual work.
I'd recommend using epoll()/kqueue() over select()/poll() in almost any situation. I've not experimented with splitting clients between threads. To be honest, I've never found a service that needed more optimsation work done on the front end client processing to justify the experimentation with threads.
I have spent the 2 last years working on that specific issue (for the G-WAN web server, which comes with MANY benchmarks and charts exposing all this).
The model that works best under Linux is epoll with one event queue (and, for heavy processing, several worker threads).
If you have little processing (low processing latency) then using one thread will be faster using several threads.
The reason for this is that epoll does not scale on multi-Core CPUs (using several concurrent epoll queues for connection I/O in the same user-mode application will just slow-down your server).
I did not look seriously at epoll's code in the kernel (I only focussed on user-mode so far) but my guess is that the epoll implementation in the kernel is crippled by locks.
This is why using several threads quickly hit the wall.
It goes without saying that such a poor state of things should not last if Linux wants to keep its position as one of the best performing kernels.
From my experience, you'll have the best perf with #6.
I also recommend you look into libevent to deal with abstracting some of these details away. At the very least, you'll be able to see some of their benchmark .
Also, about how many sockets are you talking about? Your approach probably doesn't matter too much until you start getting at least a few hundred sockets.
I use epoll() extensively, and it performs well. I routinely have thousands of sockets active, and test with up to 131,072 sockets. And epoll() can always handle it.
I use multiple threads, each of which poll on a subset of sockets. This complicates the code, but takes full advantage of multi-core CPUs.

Resources