Disclaimer: I'm not 100% on whether this is a well-formed question, so please feel free to comment and suggest improvements. I'll be actively looking out for ways to improve this question.
I have a triangle mesh, let's say the Stanford Bunny. Now, I want to raycast a ray from a source point in 3D along a 3D direction vector, and identify just the first intersection of that ray with the triangle mesh.
I already have a naive implementation cooked up. However, I'm looking for a more advanced implementation. In particular, I'll be casting many millions of rays in many directions, so I'm looking for a multi-threaded or GPU-accelerated implementation.
I have to believe that there must be some pretty complete projects online, as raycasting triangle meshes is a fundamental part of 3D computer graphics. However, I can't find anything beyond personal projects, which leads me to believe that I am using the wrong search terms, or something pretty simple along those lines.
I am looking for suggestions on existing tools that can raytrace polygonal meshes.
If all you need to do is find the distance to the mesh for millions of rays. Then it might be a good idea to look up CUDA raytracing tutorial online. This will show you how to cast many millions of rays. In most tutorials, raytracing is used to render to the screen with the camera matrix. However, this is not necessary. Simply adjust the rays starting parameters to what you need them to be such as 3D vector and position. Then output the data back to the CPU. Be weary of the bandwidth between the GPU and CPU sending millions of intersection points between the CPU and GPU can make the program run exceptionally slow.
I would like to calculate the distance between my camera and a recognized "object".
The recognized "object" is a black rectangle sticker on a white board for example. I know the values of the rectangle (x,y).
Is there a method that I can use to calculate the distance with the values of my original rectangle, and the values of the picture of the rectangle I took with the camera?
I searched the forum for answeres, but none of the were specified to calculate the distance with these attributes.
I am working on a robot called Nao from Aldebaran Robotics, I am planing to use OpenCV to recognize the black rectangle.
If you could compute the angle taken up by the image of the target, then the distance to the target should be proportional to cot (i.e. 1/tan) of that angle. You should find that the number of pixels in the image corresponded roughly to the angles, but I doubt it is completely linear, especially up close.
The behaviour of your camera lens is likely to affect this measurement, so it will depend on your exact setup.
Why not measure the size of the target at several distances, and plot a scatter graph? You could then fit a curve to the data to get a size->distance function for your particular system. If your camera is close to an "ideal" camera, then you should find this graph looks like cot, and you should be able to find your values of a and b to match dist = a * cot (b * width).
If you try this experiment, why not post the answers here, for others to benefit from?
[Edit: a note about 'ideal' cameras]
For a camera image to look 'realistic' to us, the image should approximate projection onto a plane held infront of the eye (because camera images are viewed by us by holding a planar image in front of our eyes). Imagine holding a sheet of tracing paper up in front of your eye, and sketching the objects silhouette on that paper. The second diagram on this page shows sort of what I mean. You might describe a camera which achieves this as an "ideal" camera.
Of course, in real life, cameras don't work via tracing paper, but with lenses. Very complicated lenses. Have a look at the lens diagram on this page. For various reasons which you could spend a lifetime studying, it is very tricky to create a lens which works exactly like the tracing paper example would work under all conditions. Start with this wiki page and read on if you want to know more.
So you are unlikely to be able to compute an exact relationship between pixel length and distance: you should measure it and fit a curve.
It is a big topic. If you want to proceed from a single image, take a look at this old paper by A. Criminisi. For an in-depth view, read his Ph.D. thesis. Then start playing with the OpenCV routines in the "projective geometry" sectiop.
I have been working on Image/Object Recognition as well. I just released a python programmed android app (ported to android) that recognizes objects, people, cars, books, logos, trees, flowers... anything:) It also shows it's thought process as it "thinks" :)
I've put it out as a test for 99 cents on google play.
Here's the link if you're interested, there's also a video of it in action:
https://play.google.com/store/apps/details?id=com.davecote.androideyes
Enjoy!
:)
As a brief background, I have been slowly chugging away at the core framework of a game I've been wanting to make for some time now. It has gotten to the point where I want to start really fleshing it out with some graphics assets other than colored boxes. And this brings me to the heart of my question:
What is the best method for creating graphics assets that appear the same quality independent of the device they are drawn on?
My game is styled after Pokemon, so I want to capture the 16-bit feel while still remaining crisp regardless of the device resolution. Does this mean I just create a ton of duplicate sprite sheets? i.e. a 16x16 32x32 48x48 64x64 version of each asset? Or should I be making vector art and rendering it out specifically for each device? Or is there some other alternative I haven't considered?
Thanks!
If by 16-bit feel you mean a classic old-school "pixelated" style (but with crisp edges). Then you can just draw them in the minimal dimension and upscale by whatever factor you need using a Pixel Art Scaling Algorithm, the simplest being nearest neighbour. There are of course many algos that produce much nicer results than NN like the 2xSaI and hqx family of algorithms, and RotSprite if you need rotation.
If you want clean antialiased edges you might want to check out this Microsoft Research paper: Depixelizing Pixel Art
You can then use these algos as a loading pre-pass for your game.
Alternatively, you could shift them "earlier" into your art pipeline to help speed up generation of multiple (resolution/transform) variants, which you could further touch up. This choice largely depends on your level of labor resources and perfectionism. Note also that this loses the "purity" of the solution since it violates DRY because updates will require changes in all variants of a sprite.
I would suggest to first try out some of these upscaling filters and see if you are happy with the results. If you are, you can get away with a loading prepass, which is by far the most desirable outcome because it reduces work and maintenance by a large factor.
I'm trying to do real time pitch detection of a users singing, but I'm running into alot of problems. I've tried lots of methods, including FFT (FFT Problem (Returns random results)) and autocorrelation (Autocorrelation pitch detection returns random results with mic input), but I can't seem to get any methods to give a good result. Can anyone suggest a method for real-time pitch tracking or how to improve on a method I already have? I can't seem to find any good C / C++ methods for real time pitch detection.
Thanks,
Niall.
Edit: Just to note, i've checked that the mic input data is correct, and that when using a sine wave the results are more or less the correct pitch.
Edit: Sorry this is late, but at the moment, im visualizing the autocolleration by taking the values out of the results array, and each index, and plotting the index on the X axis and the value on the Y axis (both are divided by 100000 or something, and im using OpenGL), plugging the data into a VST host and using VST plugins isn't an option to me. At the moment, it just looks like some random dots. Am i doing it correctly, or can you please point me torwards some code for doing it or help me understand how to visualize the raw audio data and autocorrelation data.
Taking a step back... To get this working you MUST figure out a way to plot intermediate steps of this process. What you're trying to do is not particularly hard, but it is error prone and fiddly. Clipping, windowing, bad wiring, aliasing, DC offsets, reading the wrong channels, the weird FFT frequency axis, impedance mismatches, frame size errors... who knows. But if you can plot the raw data, and then plot the FFT, all will become clear.
I found several open source implementations of real-time pitch tracking
dywapitchtrack uses a wavelet-based algorithm
"Realtime C# Pitch Tracker" uses a modified autocorrelation approach now removed from Codeplex - try searching on GitHub
aubio (mentioned by piem; several algorithms are available)
There are also some pitch trackers out there which might not be designed for real-time, but may be usable that way for all I know, and could also be useful as a reference to compare your real-time tracker to:
Praat is an open source package sometimes used for pitch extraction by linguists and you can find the algorithm documented at http://www.fon.hum.uva.nl/paul/praat.html
Snack and WaveSurfer also contain a pitch extractor
I know this answer isn't going to make everyone happy but here goes.
This stuff is hard, very hard. Firstly go read as many tutorials as you can find on FFT, Autocorrelation, Wavelets. Although I'm still struggling with DSP I did get some insights from the following.
https://www.coursera.org/course/audio the course isn't running at the moment but the videos are still available.
http://miracle.otago.ac.nz/tartini/papers/Philip_McLeod_PhD.pdf thesis about the development of a pitch recognition algorithm.
http://dsp.stackexchange.com a whole site dedicated to digital signal processing.
If like me you didn't do enough maths to completely follow the tutorials don't give up as some of the diagrams and examples still helped me to understand what was going on.
Next is test data and testing. Write yourself a library that generates test files to use in checking your algorithm/s.
1) A super simple pure sine wave generator. So say you are looking at writing YAT(Yet Another Tuner) then use your sine generator to create a series of files around 440Hz say from 420-460Hz in varying increments and see how sensitive and accurate your code is. Can it resolve to within 5Hz, 1Hz, finer still?
2) Then upgrade your sine wave generator so that it adds a series of weaker harmonics to the signal.
3) Next are real world variations on harmonics. So whilst for most stringed instruments you'll see a series of harmonics as simple multiples of the fundamental frequency F0, for instruments like clarinets and flutes because of the way the air behaves in the chamber the even harmonics will be missing or very weak. And for some instruments F0 is missing but can be determined from the distribution of the other harmonics. F0 being what the human ear perceives as pitch.
4) Throw in some deliberate distortion by shifting the harmonic peak frequencies up and down in an irregular manner
The point being that if you are creating files with known results then its easier to verify that what you are building actually works, bugs aside of course.
There are also a number of "libraries" out there containing sound samples.
https://freesound.org from the Coursera series mentioned above.
http://theremin.music.uiowa.edu/MIS.html
Next be aware that your microphone is not perfect and unless you have spent thousands of dollars on it will have a fairly variable frequency response range. In particular if you are working with low notes then cheaper microphones, read the inbuilt ones in your PC or Phone, have significant rolloff starting at around 80-100Hz. For reasonably good external ones you might get down to 30-40Hz. Go find the data on your microphone.
You can also check what happens by playing the tone through speakers and then recording with you favourite microphone. But of course now we are talking about 2 sets of frequency response curves.
When it comes to performance there are a number of freely available libraries out there although do be aware of the various licensing models.
Above all don't give up after your first couple of tries. Best of luck.
Here's the C++ source code for an unusual two-stage algorithm that I devised which can do Realtime Pitch Detection on polyphonic MP3 files while being played on Windows. This free application (PitchScope Player, available on web) is frequently used to detect the notes of a guitar or saxophone solo upon a MP3 recording. The algorithm is designed to detect the most dominant pitch (a musical note) at any given moment in time within a MP3 music file. Note onsets are accurately inferred by a significant change in the most dominant pitch (a musical note) at any given moment during the MP3 recording.
When a single key is pressed upon a piano, what we hear is not just one frequency of sound vibration, but a composite of multiple sound vibrations occurring at different mathematically related frequencies. The elements of this composite of vibrations at differing frequencies are referred to as harmonics or partials. For instance, if we press the Middle C key on the piano, the individual frequencies of the composite's harmonics will start at 261.6 Hz as the fundamental frequency, 523 Hz would be the 2nd Harmonic, 785 Hz would be the 3rd Harmonic, 1046 Hz would be the 4th Harmonic, etc. The later harmonics are integer multiples of the fundamental frequency, 261.6 Hz ( ex: 2 x 261.6 = 523, 3 x 261.6 = 785, 4 x 261.6 = 1046 ). Linked at the bottom, is a snapshot of the actual harmonics which occur during a polyphonic MP3 recording of a guitar solo.
Instead of a FFT, I use a modified DFT transform, with logarithmic frequency spacing, to first detect these possible harmonics by looking for frequencies with peak levels (see diagram below). Because of the way that I gather data for my modified Log DFT, I do NOT have to apply a Windowing Function to the signal, nor do add and overlap. And I have created the DFT so its frequency channels are logarithmically located in order to directly align with the frequencies where harmonics are created by the notes on a guitar, saxophone, etc.
Now being retired, I have decided to release the source code for my pitch detection engine within a free demonstration app called PitchScope Player. PitchScope Player is available on the web, and you could download the executable for Windows to see my algorithm at work on a mp3 file of your choosing. The below link to GitHub.com will lead you to my full source code where you can view how I detect the harmonics with a custom Logarithmic DFT transform, and then look for partials (harmonics) whose frequencies satisfy the correct integer relationship which defines a 'pitch'.
My Pitch Detection Algorithm is actually a two-stage process: a) First the ScalePitch is detected ('ScalePitch' has 12 possible pitch values: {E, F, F#, G, G#, A, A#, B, C, C#, D, D#} ) b) and after ScalePitch is determined, then the Octave is calculated by examining all the harmonics for the 4 possible Octave-Candidate notes. The algorithm is designed to detect the most dominant pitch (a musical note) at any given moment in time within a polyphonic MP3 file. That usually corresponds to the notes of an instrumental solo. Those interested in the C++ source code for my Two-Stage Pitch Detection algorithm might want to start at the Estimate_ScalePitch() function within the SPitchCalc.cpp file at GitHub.com.
https://github.com/CreativeDetectors/PitchScope_Player
Below is the image of a Logarithmic DFT (created by my C++ software) for 3 seconds of a guitar solo on a polyphonic mp3 recording. It shows how the harmonics appear for individual notes on a guitar, while playing a solo. For each note on this Logarithmic DFT we can see its multiple harmonics extending vertically, because each harmonic will have the same time-width. After the Octave of the note is determined, then we know the frequency of the Fundamental.
I had a similar problem with microphone input on a project I did a few years back - turned out to be due to a DC offset.
Make sure you remove any bias before attempting FFT or whatever other method you are using.
It is also possible that you are running into headroom or clipping problems.
Graphs are the best way to diagnose most problems with audio.
Take a look at this sample application:
http://www.codeproject.com/KB/audio-video/SoundCatcher.aspx
I realize the app is in C# and you need C++, and I realize this is .Net/Windows and you're on a mac... But I figured his FFT implementation might be a starting reference point. Try to compare your FFT implementation to his. (His is the iterative, breadth-first version of Cooley-Tukey's FFT). Are they similar?
Also, the "random" behavior you're describing might be because you're grabbing data returned by your sound card directly without assembling the values from the byte-array properly. Did you ask your sound card to sample 16 bit values, and then gave it a byte-array to store the values in? If so, remember that two consecutive bytes in the returned array make up one 16-bit audio sample.
Java code for a real-time real detector is available at http://code.google.com/p/freqazoid/.
It works fairly well on any computer running post-2008 real-time Java. The project has been dropped and could be picked up by any interested party. Contact me if you want further details.
Check out aubio, and open source library which includes several state-of-the-art methods for pitch tracking.
I have asked a similar question here:
C/C++/Obj-C Real-time algorithm to ascertain Note (not Pitch) from Vocal Input
EDIT:
Performous contains a C++ module for realtime pitch detection
Also Yin Pitch-Tracking algorithm
You could do real time pitch detection, be it of a singer's voice, with TarsosDSP
https://github.com/JorenSix/TarsosDSP
just in case anyone hasn't heard of it yet :-)
Can you adapt anything from instrument tuners? My delightfully compact guitar tuner is able to detect the pitch of the strings pretty well. I see this reference to a piano tuner which explains an algorithm to some extent.
Here are some open source libraries that implement pitch detection:
WORLD : speech analysis/synthesis toolkit. This is especially suitable if your source signal is voice.
aubio : audio feature extraction library. Implements many pitch detection algorithms.
Pitch detection : a collection of pitch detection algorithms implemented in C++.
dywapitchtrack : a high quality pitch detection algorithm.
YIN : another implementation of the YIN algorithm in a single C++ source file.
The Lab university I work at is in the process of purchasing a laser scanner for scanning 3D objects. All along from the start we've been trying to find a scanner that is able to capture real RAW normals from the actual scanned surface. It seems that most scanners only capture points and then the software interpolates to find the normal of the approximate surface.
Does anybody know if there is actually such a thing as capturing raw normals? Is there a scanner that can do this and not interpolate the normals from the point data?
Highly unlikely. Laser scanning is done using ranges. What you want would be combining two entirely different techniques. Normals could be evaluated with higher precision using well controlled lighting etc, but requiring a very different kind of setup. Also consider the sampling problem: What good is a normal with higher resolution than your position data?
If you already know the bidirectional reflectance distribution function of the material that composes your 3D object, it is possible that you could use a gonioreflectometer to compare the measured BRDF at a point. You could then individually optimize a computed normal at that point by comparing a hypothetical BRDF against the actual measured value.
Admittedly, this would be a reasonably computationally-intensive task. However, if you are only going through this process fairly rarely, it might be feasible.
For further information, I would recommend that you speak with either Greg Ward (Larson) of Radiance fame or Peter Shirley at NVIDIA.
Here is an example article of using structured light to reconstruct normals from gradients.
Shape from 2D Edge Gradients
I didn't find the exact article I was looking for, but this seems to be on the same principle.
You can reconstruct normals from the angle and width of the stripe after being deformed on the object.
You could with a structured light + camera setup.
The normal would come from the angle betwen the projected line and the position on the image. As the other posters point out - you can't do it from a point laser scanner.
Capturing raw normals is almost always done using photometric stereo. This almost always requires placing some assumptions on the underlying reflectance, but even with somewhat inaccurate normals you can often do well when combining them with another source of data:
Really nice code for combining point clouds (from a laser scan for example) with surface normals: http://www.cs.princeton.edu/gfx/pubs/Nehab_2005_ECP/