Is rename() without fsync() safe? - linux

Is it safe to call rename(tmppath, path) without calling fsync(tmppath_fd) first?
I want the path to always point to a complete file.
I care mainly about Ext4. Is the rename() promised to be safe in all future Linux kernel versions?
A usage example in Python:
def store_atomically(path, data):
tmppath = path + ".tmp"
output = open(tmppath, "wb")
output.write(data)
output.flush()
os.fsync(output.fileno()) # The needed fsync().
output.close()
os.rename(tmppath, path)

No.
Look at libeatmydata, and this presentation:
Eat My Data: How Everybody Gets File IO Wrong
http://www.oscon.com/oscon2008/public/schedule/detail/3172
by Stewart Smith from MySql.
In case it is offline/no longer available, I keep a copy of it:
The video here
The presentation slides (online version of slides)

From ext4 documentation:
When mounting an ext4 filesystem, the following option are accepted:
(*) == default
auto_da_alloc(*) Many broken applications don't use fsync() when
noauto_da_alloc replacing existing files via patterns such as
fd = open("foo.new")/write(fd,..)/close(fd)/
rename("foo.new", "foo"), or worse yet,
fd = open("foo", O_TRUNC)/write(fd,..)/close(fd).
If auto_da_alloc is enabled, ext4 will detect
the replace-via-rename and replace-via-truncate
patterns and force that any delayed allocation
blocks are allocated such that at the next
journal commit, in the default data=ordered
mode, the data blocks of the new file are forced
to disk before the rename() operation is
committed. This provides roughly the same level
of guarantees as ext3, and avoids the
"zero-length" problem that can happen when a
system crashes before the delayed allocation
blocks are forced to disk.
Judging by the wording "broken applications", it is definitely considered bad practice by the ext4 developers, but in practice it is so widely used approach that it was patched in ext4 itself.
So if your usage fits the pattern, you should be safe.
If not, I suggest you to investigate further instead of inserting fsync here and there just to be safe. That might not be such a good idea since fsync can be a major performance hit on ext3 (read).
On the other hand, flushing before rename is the correct way to do the replacement on non-journaling file systems. Maybe that's why ext4 at first expected this behavior from programs, the auto_da_alloc option was added later as a fix. Also this ext3 patch for the writeback (non-journaling) mode tries to help the careless programs by flushing asynchronously on rename to lower the chance of data loss.
You can read more about the ext4 problem here.

If you only care about ext4 and not ext3 then I'd recommend using fsync on the new file before doing the rename. The fsync performance on ext4 seems to be much better than on ext3 without the very long delays. Or it might be the fact that writeback is the default mode (at least on my Linux system).
If you only care that the file is complete and not which file is named in the directory then you only need to fsync the new file. There's no need to fsync the directory too since it will point to either the new file with its complete data, or the old file.

Related

Are file system operations such as rename/unlink cached?

As we know that file writings are cache by Linux OS and only get commited to disk when the OS has to do so or fsync() is called.
But,
Are file system operations such as rename/unlink cached? And does a successful return from rename/unlink ensure that the operation is commited to disk and will survive even OS crash?
If this kind of stuff was instantly written out the performance would be beyond terrible.
There are various approaches: log-structured filesystems, soft-updates, journaling and probably more.
I suggest you read http://www.nobius.org/~dbg/practical-file-system-design.pdf

Does O_DIRECT bypass filesystem journaling?

The man page for open(2) only suggests that O_DIRECT bypasses the page cache, but many descriptions around the net describe it as causing the user buffer to be DMA'd straight to the drive. If this is the case I imagine it would also bypass journaling done by the filesystem (e.g. xfs, ext4, etc.). Is this the case?
I can't find anyone claiming one way or the other. It seems to me this would be consistent with O_DIRECT being used by databases -- the common example use for O_DIRECT is when an application like a database is doing its own caching in userspace, and similarly I can imagine databases doing their own transaction logs.
Does O_DIRECT bypass filesystem journaling?
Usually it does. However, file data usually doesn't go into a filesystem's journal anyway. More details below (but note this answer doesn't try to account for CoW filesystems):
Most Linux journaling filesystems (Ext4 when journal is set to writeback or ordered (the default), XFS, JFS etc) are not journalling the data within files - they are journaling the consistency of the filesystem's data structures (metadata).
Filesystem journals only metadata (typical case): Well data within the files doesn't go into the journal anyway so using O_DIRECT doesn't change this and the data continues to not to go into the journal. However, O_DIRECT operations can still trigger metadata updates just like normal but the initiating operation can return before the metadata has been updated. See the Ext4 wiki Clarifying Direct IO's Semantics page for details.
Ext4 in journal=data mode: This is trickier - there's a warning that the desired outcome with O_DIRECT in journal=data mode might not be what is expected . From the "data=journal" section of ext4.txt:
Enabling this mode [journal=data] will disable delayed allocation and O_DIRECT support.
In this scenario O_DIRECT is looked at as only a hint and the filesystem silently falls back to stuffing the data into the page cache (making it no longer direct!). So in this case yes the data will end up going into the journal and the journal won't be bypassed. See the "Re: [PATCH 1/1 linux-next] ext4: add compatibility flag check" thread for where Ted Ts'o articulates this. There are patches floating around ("ext4: refuse O_DIRECT opens for mode where DIO doesn't work") to make the filesystem return an error at open instead but from what I can see these were rejected from the mainline kernel.

Writing to a remote file: When does write() really return?

I have a client node writing a file to a hard disk that is on another node (I am writing to a parallel fs actually).
What I want to understand is:
When I write() (or pwrite()), when exactly does the write call return?
I see three possibilities:
write returns immediately after queueing the I/O operation on the client side:
In this case, write can return before data has actually left the client node (If you are writing to a local hard drive, then the write call employs delayed writes, where data is simply queued up for writing. But does this also happen when you are writing to a remote hard disk?). I wrote a testcase in which I write a large matrix (1GByte) to file. Without fsync, it showed very high bandwidth values, whereas with fsync, results looked more realistic. So looks like it could be using delayed writes.
write returns after the data has been transferred to the server buffer:
Now data is on the server, but resides in a buffer in its main memory, but not yet permanently stored away on the hard drive. In this case, I/O time should be dominated by the time to transfer the data over the network.
write returns after data has been actually stored on the hard drive:
Which I am sure does not happen by default (unless you write really large files which causes your RAM to get filled and ultimately get flushed out and so on...).
Additionally, what I would like to be sure about is:
Can a situation occur where the program terminates without any data actually having left the client node, such that network parameters like latency, bandwidth, and the hard drive bandwidth do not feature in the program's execution time at all? Consider we do not do an fsync or something similar.
EDIT: I am using the pvfs2 parallel file system
Option 3. is of course simple, and safe. However, a production quality POSIX compatible parallel file system with performance good enough that anyone actually cares to use it, will typically use option 1 combined with some more or less involved mechanism to avoid conflicts when e.g. several clients cache the same file.
As the saying goes, "There are only two hard things in Computer Science: cache invalidation and naming things and off-by-one errors".
If the filesystem is supposed to be POSIX compatible, you need to go and learn POSIX fs semantics, and look up how the fs supports these while getting good performance (alternatively, which parts of POSIX semantics it skips, a la NFS). What makes this, err, interesting is that the POSIX fs semantics harks back to the 1970's with little to no though of how to support network filesystems.
I don't know about pvfs2 specifically, but typically in order to conform to POSIX and provide decent performance, option 1 can be used together with some kind of cache coherency protocol (which e.g. Lustre does). For fsync(), the data must then actually be transferred to the server and committed to stable storage on the server (disks or battery-backed write cache) before fsync() returns. And of course, the client has some limit on the amount of dirty pages, after which it will block further write()'s to the file until some have been transferred to the server.
You can get any of your three options. It depends on the flags you provide to the open call. It depends on how the filesystem was mounted locally. It also depends on how the remote server is configured.
The following are all taken from Linux. Solaris and others may differ.
Some important open flags are O_SYNC, O_DIRECT, O_DSYNC, O_RSYNC.
Some important mount flags for NFS are ac, noac, cto, nocto, lookupcache, sync, async.
Some important flags for exporting NFS are sync, async, no_wdelay. And of course the mount flags of the filesystem that NFS is exporting are important as well. For example, if you were exporting XFS or EXT4 from Linux and for some reason you used the nobarrier flag, a power loss on the server side would almost certainly result in lost data.

Possible to implement journaling with a single fsync per commit?

Let's say you're building a journaling/write-ahead-logging storage system. Can you simply implement this by (for each transaction) appending the data (with write(2)), appending a commit marker, and then fsync-ing?
The scenario to consider is if you do a large set of writes to this log then fsync it, and there's a failure during the fsync. Are the inode direct/indirect block pointers flushed only after all data blocks are flushed, or are there no guarantees that blocks are being flushed in order? If the latter, then during recovery, if you see a commit marker at the end of the file, you can't trust that the data between it and the previous commit marker is meaningful. Thus you have to rely on another mechanism (involving at least another fsync) to determine what extent of the log file is consistent (e.g., writing/fsyncing the data, then writing/fsyncing the commit marker).
If it makes a difference, mainly wondering about ext3/ext4 as the context.
Note that linux's and mac os's fsync and fdatasync are incorrect by default. Windows is correct by default, but can emulate linux for benchmarking purposes.
Also, fdatasync issues multiple disk writes if you append to the end of a file, since it needs to update the file inode with the new length. If you want to have one write per commit, your best bet is to pre-allocate log space, store a CRC of the log entries in the commit marker, and issue a single fdatasync() at commit. That way, no matter how much the OS / hardware reorder behind your back, you can find a prefix of the log that actually hit disk.
If you want to use the log for durable commits or write ahead, things get harder, since you need to make sure that fsync actually works. Under Linux, you'll want to disable the disk write cache with hdparm, or mount the partition with barrier set to true. [Edit: I stand corrected, barrier doesn't seem to give the correct semantics. SATA and SCSI introduce a number of primitives, such as write barriers and native command queuing, that make it possible for operating systems to export primitives that enable write-ahead logging. From what I can tell from manpages and online, Linux only exposes these to filesystem developers, not to userspace.]
Paradoxically, disabling the disk write cache sometimes leads to better performance, since you get more control over write scheduling in user space; if the disk queues up a bunch of synchronous write requests, you end up exposing strange latency spikes to the application. Disabling write cache prevents this from happening.
Finally, real systems use group commit, and do < 1 sync write per commit with concurrent workloads.
There's no guarantee on the order in which blocks are flushed to disk. These days even the drive itself can re-order blocks on their way to the platters.
If you want to enforce ordering, you need to at least fdatasync() between the writes that you want ordered. All a sync promises is that when it returns, everything written before the sync has hit storage.

Shred: Doesn't work on Journaled FS?

Shred documentation says shred is "not guaranteed to be effective" (See bottom). So if I shred a document on my Ext3 filesystem or on a Raid, what happens? Do I shred part of the file? Does it sometimes shred the whole thing and sometimes not? Can it shred other stuff? Does it only shred the file header?
CAUTION: Note that shred relies on a very important assumption:
that the file system overwrites data in place. This is the
traditional way to do things, but many modern file system designs
do not satisfy this assumption. The following are examples of file
systems on which shred is not effective, or is not guaranteed to be
effective in all file sys‐ tem modes:
log-structured or journaled file systems, such as those supplied with AIX and Solaris (and JFS, ReiserFS, XFS, Ext3, etc.)
file systems that write redundant data and carry on even if some writes fail, such as RAID-based file systems
file systems that make snapshots, such as Network Appliance’s NFS server
file systems that cache in temporary locations, such as NFS version 3 clients
compressed file systems
In the case of ext3 file systems, the above disclaimer applies
(and shred is thus of limited effectiveness) only in data=journal
mode, which journals file data in addition to just metadata. In
both the data=ordered (default) and data=writeback modes, shred
works as usual. Ext3 journaling modes can be changed by adding
the data=something option to the mount options for a
particular file system in the /etc/fstab file, as documented in the
mount man page (man mount).
All shred does is overwrite, flush, check success, and repeat. It does absolutely nothing to find out whether overwriting a file actually results in the blocks which contained the original data being overwritten. This is because without knowing non-standard things about the underlying filesystem, it can't.
So, journaling filesystems won't overwrite the original blocks in place, because that would stop them recovering cleanly from errors where the change is half-written. If data is journaled, then each pass of shred might be written to a new location on disk, in which case nothing is shredded.
RAID filesystems (depending on the RAID mode) might not overwrite all of the copies of the original blocks. If there's redundancy, you might shred one disk but not the other(s), or you might find that different passes have affected different disks such that each disk is partly shredded.
On any filesystem, the disk hardware itself might just so happen to detect an error (or, in the case of flash, apply wear-leveling even without an error) and remap the logical block to a different physical block, such that the original is marked faulty (or unused) but never overwritten.
Compressed filesystems might not overwrite the original blocks, because the data with which shred overwrites is either random or extremely compressible on each pass, and either one might cause the file to radically change its compressed size and hence be relocated. NTFS stores small files in the MFT, and when shred rounds up the filesize to a multiple of one block, its first "overwrite" will typically cause the file to be relocated out to a new location, which will then be pointlessly shredded leaving the little MFT slot untouched.
Shred can't detect any of these conditions (unless you have a special implementation which directly addresses your fs and block driver - I don't know whether any such things actually exist). That's why it's more reliable when used on a whole disk than on a filesystem.
Shred never shreds "other stuff" in the sense of other files. In some of the cases above it shreds previously-unallocated blocks instead of the blocks which contain your data. It also doesn't shred any metadata in the filesystem (which I guess is what you mean by "file header"). The -u option does attempt to overwrite the file name, by renaming to a new name of the same length and then shortening that one character at a time down to 1 char, prior to deleting the file. You can see this in action if you specify -v too.
The other answers have already done a good job of explaining why shred may not be able to do its job properly.
This can be summarised as:
shred only works on partitions, not individual files
As explained in the other answers, if you shred a single file:
there is no guarantee the actual data is really overwritten, because the filesystem may send writes to the same file to different locations on disk
there is no guarantee the fs did not create copies of the data elsewhere
the fs might even decide to "optimize away" your writes, because you are writing the same file repeatedly (syncing is supposed to prevent this, but again: no guarantee)
But even if you know that your filesystem does not do any of the nasty things above, you also have to consider that many applications will automatically create copies of file data:
crash recovery files which word processors, editors (such as vim) etc. will write periodically
thumbnail/preview files in file managers (sometimes even for non-imagefiles)
temporary files that many applications use
So, short of checking every single binary you use to work with your data, it might have been copied right, left & center without you knowing. The only realistic way is to always shred complete partitions (or disks).
The concern is that data might exist on more than one place on the disk. When the data exists in exactly one location, then shred can deterministically "erase" that information. However, file systems that journal or other advanced file systems may write your file's data in multiple locations, temporarily, on the disk. Shred -- after the fact -- has no way of knowing about this and has no way of knowing where the data may have been temporarily written to disk. Thus, it has no way of erasing or overwriting those disk sectors.
Imagine this: You write a file to disk on a journaled file system that journals not just metadata but also the file data. The file data is temporarily written to the journal, and then written to its final location. Now you use shred on the file. The final location where the data was written can be safely overwritten with shred. However, shred would have to have some way of guaranteeing that the sectors in the journal that temporarily contained your file's contents are also overwritten to be able to promise that your file is truly not recoverable. Imagine a file system where the journal is not even in a fixed location or of a fixed length.
If you are using shred, then you're trying to ensure that there is no possible way your data could be reconstructed. The authors of shred are being honest that there are some conditions beyond their control where they cannot make this guarantee.

Resources