How to Find the Minimum Taxicab/Manhattan Distance Between Two Parallel Rectangles? - geometry

Given the coordinates of the top left corners of both rectangles, and the coordinates of the bottom right corners of both rectangles, and that the rectangles are parallel to each other, as well as the x and y axis, how do you find the minimum taxicab/manhattan distance between the two rectangles?

It all comes down to categorizing the relationship between the two rectangles. I'll assume they don't intersect. In that case only two situations may occur:
The 2nd rectangle is located fully in one of four corner sections of the 1st rectangle
All other situations
In the first case you calculate the Manhatten distance between the two opposing corners (TL-BR,TR-BL,BR-TL,BL-TR)
In the second case you take either the difference in x coordinates or the difference in y coordinates of the rectangle sides (B-T,L-R,R-L,T-B) depending on the situation. This is all very easily tested with a few if or case statements.

Related

Determining a bounding polygon surrounding specific points

I've been trying to figure out how to determine a bounding polygon around a specific set of points (set A) from another set of points (set B) such that the polygon only contains points in set A. For simplicity, we can assume the polygon will be convex, set A will only include 2 points, and a solution will exist from the given data.
For example, given:
these points, I want to create a polygon around the blue points from the red points like this. This could be done by finding the next point with the greatest angle while not cutting through the blue points, but I don't want the result to be too minimal like this.
Any suggestions or algorithms for solving this problem?
Seems that if you calculate triangulation over all (red and blue) points, then triangles containing blue vertices, form the first approximation of needed region. This approximation usually would be concave, so one need to cut off "ears".
If result looks too small, it is possible to add the third vertices of outer border triangles if they don't violate convexity.

Non ordered triangle rasterisation

I'm doing a triangle rasteriser and it all works but now I want to use parallel computing to draw a bunch of triangles.
This means that the triangles can be drawn in any random order each frame, the problem is this disordered drawing is causing artifacts.
As a test case, let's consider two triangles that share two vertices, like so:
If we look at a grid of pixels the vertices will look like this:
The filling convention I'm using is just ceil()
So if we draw the blue triangle it will look like this
The problem that now becomes apparent is that if we now draw the yellow triangle, because they share the two vertices, the yellow triangle will be drawn over the blue one:
This isn't a problem on it's own, the problem is IF we draw them in the reverse order (yellow first, blue second) then the blue one will be drawn over instead:
This causes obvious artifacts because in any frame the order can be random so you will see a flickering line as one triangle is drawn over another and vise versa.
Is there any thing that can be done to ensure that the final image will look identical no matter the order the triangles are drawn in?
Always truncate to integer device pixels, and always do it the same way. This could be floor or ceiling or even rounding (if your sure both triangles get numerically identical inputs then they should round the same).
And define the boundaries of the triangle to include the lowest endpoint but exclude the highest, ie., min(x0,x1) <= x < max(x0,x1) and similarly for the y range.

fast calculation of the intersection area of a triangle and the unit square

In my current project I need to calculate the intersection area of triangles and the unit squares in an infinite grid.
For every triangle (given by three pairs of floating point numbers) I need to know the area (in the interval (0,1]) it has in common with every square it intersects.
Right now I convert both (the triangle and the square) to polygons and use Sutherland-Hodgman polygon clipping to calculate the intersection polygon, which I then use to calculate its area.
This approach now shows to be a performance bottleneck in my application. I guess a more specialized (analytical) algorithm would be much faster. Is there a standard solution for this problem, or do you have any idea? I only need the areas, not the shape of the intersections.
Your polygon are convex. There are some algorithms for convex polygons faster than general ones. I've used O'Rourke algorithm with success (code from his book here, I believe that good description exists). Note that some values may be precomputed for your squares.
If your polygons not always intersect, then you may at first check the fact of intersection with separating axes method.
Another option to try- Liang-Barski algorithm for clipping every triangle edge by square.
Edit: You can quickly find all intersections of triangle edges with grid using algorthm of Amanatides and Woo (example in grid traversal section here)
To process this task with hi performance , i suggest some modifications of
Vatti line sweep clipping.
http://en.wikipedia.org/wiki/Vatti_clipping_algorithm
Stepping from minimal Y vertex of your Triangle make such steps:
sort vertexes by Y coordinate
step Y higher to MIN(nextVertex.Y, nextGridBottom)
Calculate points of intersection of grid with edges.
Collect current trapezoid
repeat from step2 until vertex with highest Y coordinate.
Split trapezoids by X coordinate if required.
here is example of Trapezoidalization in X direction
http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/PolyPart/polyPartition.htm
It illustrate main idea of line sweep algorithm. Good luck.
You are not mentioning what precision you are looking for. In case you are looking for a analytical method, disregard this answer, but if you just want to do antialiasing I suggest a scanline edge-flag algorithm by Kiia Kallio. I have used it a few times and it is quite fast and can be set up for very high precision. I have a java implementation if you are interested.
You can take advantage of the regular pattern of squares.
I'm assuming the reason this is a bottleneck is because you have to wait while your algorithm finds all squares intersecting any of the triangles and computes all the areas of intersection. So we'll compute all the areas, but in batches for each triangle in order to get the most information from the fewest calculations.
First, as explained by others, for each edge of the triangle, you can find the sequence of squares that edge passes through, as well as the points at which it crosses each vertical or horizontal edge of a square.
Do this for all three sides, keeping a list of all the squares you encounter, but keep only one copy of each square. It may be useful to store the squares in multiple lists, so that all squares on a given row are all kept in the same list.
When you've found all squares the triangle's edges pass through, if two of those squares were on the same row, any squares between those two that are not in the list are completely inside the triangle, so 100% of each of those squares is covered.
For the other squares, the calculation of area can depend on how many vertices of the triangle are in the square (0, 1, 2, or 3) and where the edges of the triangle intersect the sides of the square. You can summarize all the cases in a few pencil-and-paper drawings, and come up with calculations for each one. For example, when an edge of triangle crosses two sides of the square, with one corner of the square on the "outside" side of the edge, that corner is one angle of a small triangle "cut off" by that edge of the larger triangle; use the points of intersection on the square's sides to compute the area of the small triangle and deduct it from the area of the square. If two points instead of one are "outside", you have a trapezoid whose two base lengths are found from the points of intersection, and whose height is the width of the square; deduct its area from the square. If three points are outside, deduct the entire area of the square and then add the area of the small triangle.
One vertex of the large triangle inside the square, three corners of the square outside that angle: draw a line from the remaining corner to the triangle's vertex, so you have two small triangles, deduct the entire square and add those triangles' areas. Two corners of the square outside the angle, draw lines to the vertex to get three small triangles, etc.
I'm phrasing this so that you always assume you start with the entire area of the square and reduce the area by some amount depending on how the edge of the triangle intersects the square. That way, in the case where the edges of the triangle intersect the square more than twice--such as one edge cuts across one corner of the square and another edge cuts across a different corner, you can just deduct the area cut off by the first edge, then deduct the area cut off by the second edge.
This will be a considerable number of special cases, though you can take advantage of symmetry; for example, you don't have to write the complete calculation for "cut off a triangle in one corner" four times.
You'll write a lot more code than if you just took someone's convex-polygon library off the shelf, and you will want to test the living daylights out of it to make sure you didn't forget to code any cases, but once you get it working, it shouldn't take much more effort to make it reasonably fast.

Gaps Between Rectangles Connected at the Center

I'm experimenting with a vector based graphics style with objects represented as series of line segments with a given width(it would probably be easier to think of these as rectangles). The problem is that these segments are connected at the center and leave a gap (shown below). I've determined that the most efficient way to cover this gap is simply to cover it with a triangle, and since I'm working in OpenGL, all I need are the points of the two points that don't overlap with the other rectangle, the third point being the center point where the two line segments(rectangles) are connected. How can I determine which points I need to use for the triangle, given that I have all of the points from both rectangles?
EDIT: I will also accept alternative solutions, as long as they cover up that gap.
EDIT 2: Nevermind, I solved it. I'll post code once I have better Internet connection.
Maybe I'm misunderstanding the question... but if you zoom in on the top corner of your red pentagon, you get something like this, am I right?
where A and B are nodes on the rectangle for edge1 and C and D are nodes on the rectangle for edge2. You say you already know these coordinates. And from what you say, the edges meet at the centre, which is halfway between A and B, and also halfway between C and D. So call this point X, and you can calculate its coordinates easily I guess.
So all you need to do is draw the missing triangle AXC, right? So one way would be to determine that A and C are on the "outside" of the polygon (and therefore need filling) and B and D are on the "inside" and therefore don't. But it's probably easier to just draw both, as it doesn't hurt. So if you fill AXC and BXD, you'd get this:
The solution I found assumes that there are 3 basic cases:
First, the three unique center points for the two rectangle proceed upward (positive y direction) so the gap is either on the left or right of the connection. In my code, I had the corner points of the rectangle organized by their orientation to the left or right of the center point, so if the bottom rectangle's left point is below the top rectangle's left point, then the gap is between the left points of the two rectangles, otherwise the gap is between the right points.
Second, the three unique center points have a maximum at the center most of the center points, so the gap is on the top. The gap is then between the two points with the maximum y values.
Third, the three unique center points have a minimum at the center most of the center points, so the gap is on the bottom. The gap is then between the two points with the minimum y values.
[I'll post pictures of the example cases if it is requested]

Subtract Rectangle from Polygon

I'm looking for an algorithm that will subtract a rectangle from a simple, concave polygon and return a remainder of polygons. If the rectangle encloses the polygon, the remainder is null. In most cases, it looks like at least one edge will be shared between the rectangle and the polygon.
I've been digging around the internet, but I've not found a good lead.
Can someone point me in the right direction?
That's easy: Find the intersections between the rectangle and the edges of the simple polygon and cut the segments there. This does not require a spatial search structure as the 4 edges of the polygon are a constant factor, so that runs in linear time.
Then compute a constrained Delaunay triangulation of all segments and use seed points to grow the regions. Combine the regions appropriately (the triangles inside the simple polygon minus the ones inside the rectangle minus triangles outside. The triangles that remain are your result and the border edges are the edges of the resulting polygon.
Edit: I'm sorry if the answer was too short. The figure below shows the idea.
a) The two input polygons
b) The CDT after insertion of the (cutted) segments
c) The grown regions
d) The green region minus the red region
e) The border edges of the region of d.

Resources