best way to model the following scenario - domain-driven-design

I am starting of in the world of DD and am attempting to build a simple enough application. I have a few questions on how I am choosing to model my domain.
My application allows users to order greeting cards.
The user can order any number of cards in one order.
When choosing a card to order they browse the card catalogue. THe card catalogue however is not stored locally, its retrieved from an external system, however every card they have browsed to in their current session will be cached locally in the database for the lifetime of that session in case they wish to add to the order.
When they add a card to the order, it goes on a new order line item. THey then must specify some other details for the order line item, colour, greeting etc...
My question is this:
How do I model the card in my domain. I have Order as an aggregate root, with many order line items. Each order line item will have certain attributes, and a card.
However my card catalogue will also have a card concept which will have the same properties as the card on my order line item.
Am I correct in modelling these cards as 2 seperate entities (CatalogueCard and OrderCard) even though they have the same set of properties?
The same question could be posed also for the address a card must be addressed to(each order line item will have an address) and the billing address for the order. Should these be modelled as completley seperate entities?
Thanks in advance

The fact that you're seeing business entity concepts repeated as you model your domain means that you're probably on the right track. But if you have two objects with the same set of attributes you should definitely just use one. CatalogueCard and OrderCard should be instance names, not class names, except if you expect some change then you can inherit from a base Card class. Same goes for your address class. Just use one address class. The address type should just be another attribute which could be an enum value of the types of addresses your model supports.

Related

Blockchain Application Architecture: UML & Use Cases

For my internship, I need to implement a blockchain based solution to manage a drug supply chain. The management of this supply chain implies to track-and-trace (geolocate) a drug on the chain, but also to monitor the storage temperature to see if the cold chain is respected. For that I created a mock-up of the POC my Dapps (https://balsamiq.cloud/sum5oq5/p8lsped)and also I wanted to prepare myself by doing a UML and a use cases. However, I didn't find a lot of information about blockchain's UML and use cases besides two literatures which were quite different, so I don't know if what I did was correct or not...
The users of my Dapps will be the following ones:
The stakeholders (Manufacturers, Distributors and Retailers) which will use the Dapps to place orders and also monitor them. They also can search in the historic a specific order. Finally, trough IOT sensors they update the conditions of the order (temperature & location).
The administrator which roles is to update the Dapps and its rules. But also to add or delete user while also defining the rights that they have on the blockchain (I intend to use a permisionned blockchain). Finally, they are also here to help in case of technical problem.
The Dapps that I'm thinking about works in the following:
A user, the customer, can place an order (a list of products) to a
certain seller and choose the final destination of the order.
The order is then put together before being shipped or stocked in the
depots of one of the stakeholders (distributor or retailer) with a
description of the stocking and/or shipping condition of the product
(for example the product must be stocked or transported in a room
with a temperature of less than 5°C). During the shipping and
storing, an IOT device will feed the drops with the temperature and
geolocation of the product by updating the data each 5-10mn.
Obviously they will be a function that allows all the users to see
the history of the order passed and search inside a specific order.
In case where the temperature doesn't respect the temperature
recommended, then the smart-contract send an alert. The same if the
collocation of the product is "weird" like being in some European
countries and not in an Asian country, an alert will be sent again by
the smart-contractual. Finally, in the case where the product is sent
to the asked location by the customer, then the money for the order
will be paid to the seller.
So based on what I explained, I came here in hope that someone tell me if the use cases and UML that I did were correct or not.
I thank in advance anybody who'll take the time to help me.

CQRS Read Model Projections: How complex is too complex a data transformation

I want to sanity check myself on a view projection, in regards to if an intermediary concept can purely exist in the read model while providing a bridge between commands.
Let me use a contrived example to explain.
We place an order which raises an OrderPlaced event. The workflow then involves generating a picking slip, which is used to prepare a shipment.
A picking slip can be generated from an order (or group of orders) without any additional information being supplied from any external source or user. Is it acceptable then that the picking slip can be represented purely as a read model?
So:
PlaceOrderCommand -> OrderPlacedEvent
OrderPlacedEvent -> PickingSlipView
The warehouse manager can then view a picking slip, select the lines they would like to ship, and then perform a PrepareShipment command. A ShipmentPrepared event will then update the original order, and remove the relevant lines from the PickingSlipView.
I know it's a toy example, but I have a conceptually similar use case where a colleague believes the PickingSlip should be a domain entity/aggregate in its own right, as it's conceptually different to order. So you have PlaceOrder, GeneratePickingSlip, and PrepareShipment commands.
The GeneratePickingSlip command however simply takes an order number (identifier), transforms the order data into a picking slip entity, and persists the entity. You can't modify or remove a picking slip or perform any action on it, apart from using it to prepare a shipment.
This feels like introducing unnecessary overhead on the write model, for what is ultimately just a transformation of existing information to enable another command.
So (and without delving deeply into the problem space of warehouses and shipping)...
Is what I'm proposing a legitimate use case for a read model?
Acting as an intermediary between two commands, via transformation of some data into a different view. Or, as my colleague proposes, should every concept be represented in the write model in all cases?
I feel my approach is simpler, and avoiding unneeded complexity, but I'm new to CQRS and so perhaps missing something.
Edit - Alternative Example
Providing another example to explore:
We have a book of record for categories, where each record is information about products and their location. The book of record is populated by an external system, and contains SKU numbers, mapped to available locations:
Book of Record (Electronics)
SKU# Location1 Location2 Location3 ... Location 10
XXXX Introduce Remove Introduce ... N/A
YYYY N/A Introduce Introduce ... Remove
Each book of record is an entity, and each line is a value object.
The book of record is used to generate different Tasks (which are grouped in a TaskPlan to be assigned to a person). The plan may only cover a subset of locations.
There are different types of Tasks: One TaskPlan is for the individual who is on a location to add or remove stock from shelves. Call this an AllocateStock task. Another type of Task exists for a regional supervisor managing multiple locations, to check that shelving is properly following store guidelines, say CheckDisplay task. For allocating stock, we are interested in both introduced and removed SKUs. For checking the displays, we're only interested in newly Introduced SKUs, etc.
We are exploring two options:
Option 1
The person creating the tasks has a View (read model) that allows them to select Book of Records. Say they select Electronics and Fashion. They then select one or more locations. They could then submit a command like:
GenerateCheckDisplayTasks(TaskPlanId, List<BookOfRecordId>, List<Locations>)
The commands would then orchestrate going through the records, filtering out locations we don't need, processing only the 'Introduced' items, and creating the corresponding CheckDisplayTasks for each SKU in the TaskPlan.
Option 2
The other option is to shift the filtering to the read model before generating the tasks.
When a book of record is added a view model for each type of task is maintained. The data might be transposed, and would only include relevant info. ie. the CheckDisplayScopeView might project the book of record to:
Category SKU Location
Electronics (BookOfRecordId) XXXX Location1
Electronics (BookOfRecordId) XXXX Location3
Electronics (BookOfRecordId) YYYY Location2
Electronics (BookOfRecordId) YYYY Location3
Fashion (BookOfRecordId) ... ... etc
When generating tasks, the view enables the user to select the category and locations they want to generate the tasks for. Perhaps they select the Electronics category and Location 1 and 3.
The command is now:
GenerateCheckDisplayTasks(TaskPlanId, List<BookOfRecordId, SKU, Location>)
Where the command now no longer is responsible for the logic needed to filter out the locations, the Removed and N/A items, etc.
So the command for the first option just submits the ID of the entity that is being converted to tasks, along with the filter options, and does all the work internally, likely utilizing domain services.
The second option offloads the filtering aspect to the view model, and now the command submits values that will generate the tasks.
Note: In terms of the guidance that Aggregates shouldn't appear out of thin air, the Task Plan aggregate will create the Tasks.
I'm trying to determine if option 2 is pushing too much responsibility onto the read model, or whether this filtering behavior is more applicable there.
Sorry, I attempted to use the PickingSlip example as I thought it would be a more recognizable problem space, but realize now that there are connotations that go along with the concept that may have muddied the waters.
The answer to your question, in my opinion, very much depends on how you design your domain, not how you implement CQRS. The way you present it, it seems that all these operations and aggregates are in the same Bounded Context but at first glance, I would think that there are 3 (naming is difficult!):
Order Management or Sales, where orders are placed
Warehouse Operations, where goods are packaged to be shipped
Shipments, where packages are put in trucks and leave
When an Order is Placed in Order Management, Warehouse reacts and starts the Packaging workflow. At this point, Warehouse should have all the data required to perform its logic, without needing the Order anymore.
The warehouse manager can then view a picking slip, select the lines they would like to ship, and then perform a PrepareShipment command.
To me, this clearly indicates the need for an aggregate that will ensure the invariants are respected. You cannot select items not present in the picking slip, you cannot select more items than the quantities specified, you cannot select items that have already been packaged in a previous package and so on.
A ShipmentPrepared event will then update the original order, and remove the relevant lines from the PickingSlipView.
I don't understand why you would modify the original order. Also, removing lines from a view is not a safe operation per se. You want to guarantee that concurrency doesn't cause a single item to be placed in multiple packages, for example. You guarantee that using an aggregate that contains all the items, generates the packaging instructions, and marks the items of each package safely and transactionally.
Acting as an intermediary between two commands
Aggregates execute the commands, they are not in between.
Viewing it from another angle, an indication that you need that aggregate is that the PrepareShippingCommand needs to create an aggregate (Shipping), and according to Udi Dahan, you should not create aggregate roots (out of thin air). Instead, other aggregate roots create them. So, it seems fair to say that there needs to be some aggregate, which ensures that the policies to create shippings are applied.
As a final note, domain design is difficult and you need to know the domain very well, so it is very likely that my proposed solution is not correct, but I hope the considerations I made on each step are helpful to you to come up with the right solution.
UPDATE after question update
I read a couple of times the updated question and updated several times my answer, but ended up every time with answers very specific to your example again and I'm most likely missing a lot of details to actually be helpful (I'd be happy to discuss it on another channel though). Therefore, I want to go back to the first sentence of your question to add an important comment that I missed:
an intermediary concept can purely exist in the read model, while providing a bridge between commands.
In my opinion, read models are disposable. They are not a single source of truth. They are a representation of the data to easily fulfil the current query needs. When these query needs change, old read models are deleted and new ones are created based on the data from the write models.
So, only based on this, I would recommend to not prepare a read model to facilitate your commands operations.
I think that your solution is here:
When a book of record is added a view model for each type of task is maintained. The data might be transposed, and would only include relevant info.
If I understand it correctly, what you should do here is not create view model, but create an Aggregate (or multiple). Then this aggregate can receive the commands, apply the business rules and mutate the state. So, instead of having a domain service reading data from "clever" read models and putting it all together, you have an aggregate which encapsulates the data it needs and the business logic.
I hope it makes sense. It's a broad topic and we could talk about it for hours probably.

Is this Use Case correct?

Its my first time making a use case and this is for my coursework.
I had to follow the case study below.
Case Study 8: Warehouse Control System (WCS)
A warehouse distributes health food and related products. Customers order a particular
product and quantity from the warehouse. The Warehouse Control System WCS saves the
order and provides to the customer the order number. The WCS generates a pick list and
shopping label, which tells the order-picker person how many of each item to pick to fulfil
the order. The order-picker picks the items, places them in the box, and places the shipping
label on it. The order-picker then uses the WCS to specify whether the order is ready or
not. Then the manager sends the order number, address, and the payment data to the
shipping company. At the end of the day, the shipping company arrives to pick up all the
orders. The inventory of the product in stock is carried out by the staff, but in others, it is
outsourced to an external company. Each staff has a specific function which is either to
raise an order or check the re-order level of the products in stock.
The company wants to create a computer system that allows employees and external
companies to access the application system on desktop. Model, design and implement a
GUI client that can access the database using Visual Studio or any other software
development package. The database must be designed from the class model and the entity
data model using MS Access or Oracle database.
I'm not sure: should the Warehouse Control System (WCS) be an actor ? If not how to make the use case without it?
Here the use case I made:
The WCS is the system under consideration (the blue boundary).
Some observations:
Use verb-subject(-object) to name use cases
Order ready and the like are no use cases
Try to not start functional decomposition (like it seems you did with that Order ready
I recommend to read Bittner/Spence about use cases as usual.

Allowing Users to create custom groups of Countries

I'm working on a project for a customer, and one of the requirements is that Users should be allow to assign to each Product (in their case, a Node) a Country or a Region, where the Region is simply a group of Countries, not necessarily in the same area.
I've seen there are many different ways to manage a list of Countries, often suggesting to use Taxonomy for them, but I can't figure out how could I allow users to create these "Regions". To make things complicated, customer wants to have a simple interface, where only one field is present on the form. In this field, Users must be able to choose either a Country or a Region.
Perhaps I could implement everything using Nodes, i.e.:
- Country Nodes
- Region Nodes, with a multiple-valued Node Reference to Country Nodes
But I wonder if that would not be too heavy...
I hope the issue is clear, if not feel free to ask and I'll try to explain it better. Thanks for all suggestions.
I ended up creating my own tables and code to handle the whole thing, as I couldn't find any better solution. I used tables from IP2Country module as a source for Country Codes.

How to determine the aggregate root

I have an application in which an Engineer accesses gas wells. He can see a list of wells by choosing any combination of 7 characteristics. The characteristics are company, state, county, basin, branch, field, operator in their respective order. The application starts and I need to retrieve a list of companies. The companies the user sees is based on their security credentials. What would be my aggregate root/domain object which to base my repository. I first thought user, but I never retrieve anything about a user. The combination of those items and a couple of other attributes are collectively called wellheader information. Would that be the aggregate root or domain object for my repository?
Thanks in advance
With a short description like that, it can only be a quess on how your design could be.
As I read it, your are really interested in wells for a given engineer. (is the engineer the user you mention?)
So a first try could be to model the concept of a well as an aggregate root.
So maybe something like this:
ICollection<Well> wells = WellRepository.GetWellsForEngineer(engineerInstance);
Maybe your engineer is associated with a characteristics object.
Either way, you have to associate the engineer with wells in a given company, state and so on to be able to extract which wells the engineer is actualy assigned to.
If this dosen't help you, maybe you could elaborate on your domain.

Resources