triangle points around a point - geometry

I have given the coordinates of 1000 triangles on a plane (triangle number (T0001-T1000) and its coordinates (x1,y1) (x2,y2),(x3,y3)). Now, for a given point P(x,y), I need to find a triangle which contains the point P.
One option might be to check all the triangles and find the triangle that contain P. But, I am looking for efficient solution for this problem.

You are going to have to check every triangle at some point during the execution of your program. That's obvious right? If you want to maximize the efficiency of this calculation then you are going to create some kind of cache data structure. The details of the data structure depend on your application. For example: How often do the triangles change? How often do you need to calculate where a point is?
One way to make the cache would be this: Divide your plane in to a finite grid of boxes. For each box in the grid, store a list of the triangles that might intersect with the box.
Then when you need to find out which triangles your point is inside of, you would first figure out which box it is in (this would be O(1) time because you just look at the coordinates) and then look at the triangles in the triangle list for that box.

Several different ways you could search through your triangles. I would start by eliminating impossibilities.
Find a lowest left corner for each triangle and eliminate any that lie above and/or to the right of your point. continue search with the other triangles and you should eliminate the vast majority of the original triangles.
Take what you have left and use the polar coordinate system to gather the rest of the needed information based on angles between the corners and the point (java does have some tools for this, I do not know about other languages).
Some things to look at would be convex hull (different but somewhat helpful), Bernoullies triangles, and some methods for sorting would probably be helpful.

Related

Algorithm for regularizing or normalizing a polygon which is supposed to be rectangular

My app captures the shape of a room by having the user point a camera at floor corners, and then doing a bunch of math, eventually ending up with a polygon.
The assumption is that the walls are straight (not curved). The majority of the corners are formed by walls at right angles to each other, but in some cases might not be.
Depending on how accurately the user points the camera, the (x,y) coordinates I derive for the corner might be beyond the actual corner, or in front of the actual camera, or, less likely, to the left or right. Obviously, in this case, when I connect the dots, I get weird parallelogram or rhomboid shapes. See example.
I am looking for a program or algorithm to normalize or regularize these shapes, provided we know which corners are supposed to be right angles.
My initial attempt involved finding segments which had angles which were "close" to each other, adjust them all to the same angle, and then recalculate the vertices. However, this algorithm proved to be unstable.
My current thinking is to find angles which are most obtuse (as would be caused by a point mistakenly placed beyond the actual corner), or most acute (as would be caused by a point mistakenly placed in front of the actual corner), and find the corner point which would make it a right angle. The problem, however, is that such as adjustment could have side-effects on other corners, such as making them even further away from right angles. I sense I need some kind of algorithm which takes all the information and optimizes/solves it at once--is this a kind of linear programming problem?--but I am stuck.
There is not a unique solution.
For example, take the perpendicular from the middle point of an edge to the two neighboring edges. This will give you two new corners.
Or take the perpendicular from the end point of an edge to other edges.
Or compute the average of angles in the end points of an edge. Use this average and the middle point of the edge to compute new corners.
Or...
To get the most faithful compliance, capture (or calculate) distances from each corner to the other three. Build triangles with those distances. Then use the average of the coordinates you compute for a corner from 2 or 3 triangles.
Resulting angles will not be exactly 90 degrees, but the polygon will represent the room fairly.

"Inverting" a concave polygon

I'm building a 2D game where player can only see things that are not blocked by other objects. Consider this example on how it looks now:
I've implemented raytracing algorithm for this and it seems to work just fine (I've reduced the boundaries for demo to make all edges visible).
As you can see, lighter area is built with a bunch of triangles, each of them having common point in the position of player. Each two neighbours have two common points.
However I'm willing to calculate bounds for external the part of the polygon to fill it with black-colored triangles "hiding" what player cannot see.
One way to do it is to "mask" the black rectangle with current polygon, but I'm afraid it's very ineffective.
Any ideas about an effective algorithm to achieve this?
Thanks!
A non-analytical, rough solution.
Cast rays with gradually increasing polar angle
Record when a ray first hits an object (and the point where it hits)
Keep going until it no longer hits the same object (and record where it previously hits)
Using the two recorded points, construct a trapezoid that extends to infinity (or wherever)
Caveats:
Doesn't work too well with concavities - need to include all points in-between as well. May need Delaunay triangulation etc... messy!
May need extra states to account for objects tucked in behind each other.

How do I check if a set of plane polygones create a watertight polyhedra

I am currently wondering if there is a common algorithm to check whether a set of plane polygones, not nescessarily triangles, contruct a watertight polyhedra. Each polygon has an oriantation (normal vector). A simple solution would just be to say yes or no. A more advanced version would be to point out the edges, where the polyhedron is "open". I am not really interesed on how to close to polyhedra.
I would like to point out, that my "holes" are not nescessarily small, e.g., one face of a cube might be missing. Thus, the "undersampling correction" algorithms dont seem to be the correct approach. Furthermore, I am talking of about 100 - 1000, not 1000000 polygons, so computation time should not really be a problem.
Any hints or tips?
kind regards,
curator
I believe you can use a simple topological test -- count the number of times each edge appears in the full list of polygons.
If the set of polygons define the surface of a closed volume, each edge should have count>=2, indicating that each edge is shared by (at least) two adjacent polygons. If the surface is manifold count==2 exactly.
Edges with count==1 indicate open regions of the surface.
The above answer does not cover many cases. A more correct (but not necessarily complete: I wouldn't know) algorithm is to ensure that every edge of every polygon (or of the mesh/polyhedron) has an even number of faces connected to it. Consider the following mesh:
The segment (line) between the closest vertex and the one below is attached to 3 faces (one one of the outer triangle and two of the inner triangle), which is greater than two faces. However this is clearly not closed.

"ray through vertex" special case when detecting point in polygon

To detect if a point is in a polygon, you project a line from the point, to infinity, and see how many of polygon's vertices it intersects with... simple enough. My problem is that if the ray intersects the polygon on one of the points, then it is counted as intersecting two segments, and considered outside the polygon. I altered my function to make it only count one of the segments when the ray intersects a point of the polygon, but there are cases where a line could intersect the point while still being outside as well. Take this image as an example:
If you assume the point in the top left is "infinity", and cast a ray to either of the other points, both intersect at a point of the polygon, and would count as intersecting the same number of vertices even though one is inside, and one is outside.
Is there a way to compensate for that, or do I just have to assume that those fringe cases won't pop up?
If the ray crosses a side exactly on a vertex, only count that side if the other vertex is above the ray. That will fix your corner case.
For example in the picture you posted, the lower ray crosses two sides of the square at the top-left vertex, but one side is above the ray and the other below, so that contributes 1 and the target point is found to be inside. The upper ray crosses two sides at the top-right vertex, both sides are below the ray, so they contribute 0 to the count and the target point is found to be outside.
Update:
I remembered reading an article which describes a technique for dealing with singular cases in general. Please read my other answer if interested.
While my first answer should do the trick for this simple problem, I can't help but mention that there exist general techniques for dealing with these kinds of special cases.
This article describes a technique for dealing with these kinds of issues in general. And one of the first examples they provide happens to be the algorithm you ask about!
The idea is to apply Automatic differentiation aka Dual numbers to compute symbolic perturbations.
By the way the same technique can also be used to avoid handling 0/0 as a special case in programs!
Here is the blog post I originally learned this from, it gives some great background to the technique, and the author blogs a lot about automatic differentiation (AD).
Despite appearances AD is a very practical technique especially in languages with good support for operator overloading (eg: C++, Haskell, Python ...) and I have used it in "real life" (industrial applications in C++).
Send ray in another direction.
If you try n+1 different directions (n is number of polygon points) one of them surely will not pass through any vertex.
This will simplify the code compared to consideration of corner cases.
Worst case becomes O(n)*CheckComplexity(n) which is likely O(n^2). If it's not acceptable, you can just sort all vertices by direction from the point to them and select middle of some interval. This will give O(n*log n).

Minimize Polygon Vertices

What is a good algorithm for reducing the number of vertices in a polygon without changing the way it looks very much?
Input: A polygon, represented as a list of points, with way too many verticies: raw input from the mouse, for example.
Output: A polygon with much fewer verticies that still looks a lot like the original: something usable for collision detection, for example (not necessarily convex).
Edit: The solution to this would be similar to finding a multi-segmented line of best fit on a graph. It's called Segmented Least Squares in my algorithms book.
Edit2: The Douglas Peucker Algorithm is what I really want.
Edit: Oh look, Simplifying Polygons
You mentioned collision detection. You could go really simple and calculate a bounding convex hull around it.
If you cared about the concave areas, you can calculate a concave hull by taking the centroid of your polygon, and choosing a point to start. From the starting point rotate around the centroid, finding each vertex you want to keep, and assigning that as the next vertex in the bounding hull. The complexity of the algorithm would come in how you determined which vertices to keep, but I'm sure you thought of that already. You can throw all your vertices into buckets based on their location relative to the centroid. When a bucket gets more than an arbitrary number of vertices full, you can split it. Then take the mean of the vertices in that bucket as the vertex to use in your bounding hull. Or, forget the buckets, and when you're moving around the centroid, only choose a point if its more than a given distance from the last point.
Actually, you could probably just use all the vertices in your polygon as "cloud of points" and calculate the concave hull around that. I'll look for an algorithm link. Worst case on this would be a completely convex polygon.
Another alternative is to start with a bounding rectangle. For each vertex on the rectangle, find the distance from the point to the polygon. For the farthest vertex, split it into two more vertices and move them in some. Repeat until some proportion of either vertices or area is met. I'd have to think about the details of this one a little more.
If you care about the polygon actually looking similar, even in the case of a self-intersecting polygon, then another approach would be required, but it doesn't sound like thats necessary since you asked about collision detection.
This post has some details about the convex hull part.
There's a lot of material out there. Just google for things like "mesh reduction", "mesh simplification", "mesh optimization", etc.

Resources